This paper deals with the energy efficiency of cooperative cruise control technologies when considering vehicle strings in a realistic driving environment. In particular, we design a cooperative longitudinal controller using a state-of-the-art model predictive control (MPC) implementation. Rather than testing our controller on a limited set of short maneuvers, we thoroughly assess its performance on a number of regulatory drive cycles and on a set of driving missions of similar length that were constructed based on real driving data. This allows us to focus our assessment on the energetic aspects in addition to testing the controller’s robustness. The analyzed controller, based on linear MPC, uses vehicle sensor data and information transmitted by the vehicle driving the string to adjust the longitudinal trajectory of the host vehicle to maintain a reduced inter-vehicular distance while simul- taneously optimizing energy efficiency. To keep our controller as close as possible to a real-life deployable technology, we also consider passenger comfort in our MPC design, which is a relevant aspect that is often a conflicting objective with respect to energy efficiency. Our simulation scenario is characterized by a homogeneous string of three battery electric vehicles and was modelled in a MATLAB/Simulink environment. An extensive set of simulation experiments forms the basis for our discussion on the energy-saving potential of cooperative driving automation systems.
MPC-Based Cooperative Longitudinal Control for Vehicle Strings in a Realistic Driving Environment / Musa, Alessia; Miretti, Federico; Misul, Daniela. - In: SAE TECHNICAL PAPER. - ISSN 0148-7191. - ELETTRONICO. - 1:(2023). (Intervento presentato al convegno WCX SAE World Congress Experience) [10.4271/2023-01-0689].
MPC-Based Cooperative Longitudinal Control for Vehicle Strings in a Realistic Driving Environment
Musa, Alessia;Miretti, Federico;Misul, Daniela
2023
Abstract
This paper deals with the energy efficiency of cooperative cruise control technologies when considering vehicle strings in a realistic driving environment. In particular, we design a cooperative longitudinal controller using a state-of-the-art model predictive control (MPC) implementation. Rather than testing our controller on a limited set of short maneuvers, we thoroughly assess its performance on a number of regulatory drive cycles and on a set of driving missions of similar length that were constructed based on real driving data. This allows us to focus our assessment on the energetic aspects in addition to testing the controller’s robustness. The analyzed controller, based on linear MPC, uses vehicle sensor data and information transmitted by the vehicle driving the string to adjust the longitudinal trajectory of the host vehicle to maintain a reduced inter-vehicular distance while simul- taneously optimizing energy efficiency. To keep our controller as close as possible to a real-life deployable technology, we also consider passenger comfort in our MPC design, which is a relevant aspect that is often a conflicting objective with respect to energy efficiency. Our simulation scenario is characterized by a homogeneous string of three battery electric vehicles and was modelled in a MATLAB/Simulink environment. An extensive set of simulation experiments forms the basis for our discussion on the energy-saving potential of cooperative driving automation systems.File | Dimensione | Formato | |
---|---|---|---|
2023-01-0689.pdf
accesso riservato
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
1.2 MB
Formato
Adobe PDF
|
1.2 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2977950