Underground porous media are complex multiphase systems, where the behavior at the macro-scale is affected by physical phenomena occurring at the pore(micro)-scale. The understanding of pore-scale fluid flow, transport properties, and chemical reactions is fundamental to reducing the uncertainties associated with the dynamic behavior, volume capacity, and injection/withdrawal efficiency of reservoirs and groundwater systems. Lately, laboratory technologies were found to be growing along with new computational tools, for the analysis and characterization of porous media. In this context, a significant contribution is given by microfluidics, which provides synthetic tools, often referred to as micromodels or microfluidic devices, able to mimic porous media networks and offer direct visualization of fluid dynamics. This work aimed to provide a review of the design, materials, and fabrication techniques of 2D micromodels applied to the investigation of multiphase flow in underground porous media. The first part of the article describes the main aspects related to the geometrical characterization of the porous media that lead to the design of micromodels. Materials and fabrication processes to manufacture microfluidic devices are then described, and relevant applications in the field are presented. In conclusion, the strengths and limitations of this approach are discussed, and future perspectives are suggested.

2D Microfluidic Devices for Pore-Scale Phenomena Investigation: A Review / Massimiani, Alice; Panini, Filippo; Marasso, Simone Luigi; Cocuzza, Matteo; Quaglio, Marzia; Pirri, Candido Fabrizio; Verga, Francesca; Viberti, Dario. - In: WATER. - ISSN 2073-4441. - 15:6(2023), p. 1222. [10.3390/w15061222]

2D Microfluidic Devices for Pore-Scale Phenomena Investigation: A Review

Massimiani, Alice;Panini, Filippo;Marasso, Simone Luigi;Cocuzza, Matteo;Quaglio, Marzia;Pirri, Candido Fabrizio;Verga, Francesca;Viberti, Dario
2023

Abstract

Underground porous media are complex multiphase systems, where the behavior at the macro-scale is affected by physical phenomena occurring at the pore(micro)-scale. The understanding of pore-scale fluid flow, transport properties, and chemical reactions is fundamental to reducing the uncertainties associated with the dynamic behavior, volume capacity, and injection/withdrawal efficiency of reservoirs and groundwater systems. Lately, laboratory technologies were found to be growing along with new computational tools, for the analysis and characterization of porous media. In this context, a significant contribution is given by microfluidics, which provides synthetic tools, often referred to as micromodels or microfluidic devices, able to mimic porous media networks and offer direct visualization of fluid dynamics. This work aimed to provide a review of the design, materials, and fabrication techniques of 2D micromodels applied to the investigation of multiphase flow in underground porous media. The first part of the article describes the main aspects related to the geometrical characterization of the porous media that lead to the design of micromodels. Materials and fabrication processes to manufacture microfluidic devices are then described, and relevant applications in the field are presented. In conclusion, the strengths and limitations of this approach are discussed, and future perspectives are suggested.
File in questo prodotto:
File Dimensione Formato  
water-15-01222.pdf

accesso aperto

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 2.47 MB
Formato Adobe PDF
2.47 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2977876