In this work we deal with parametrized time dependent optimal control problems governed by partial differential equations. We aim at extending the standard saddle point framework of steady constraints to time dependent cases. We provide an analysis of the well-posedness of this formulation both for parametrized scalar parabolic constraint and Stokes governing equations and we propose reduced order methods as an effective strategy to solve them. Indeed, on one hand, parametrized time dependent optimal control is a very powerful mathematical model which is able to describe several physical phenomena, on the other, it requires a huge computational effort. Reduced order methods are a suitable approach to have rapid and accurate simulations. We rely on POD-Galerkin reduction over the physical and geometrical parameters of the optimality system in a space-time formulation. Our theoretical results and our methodology are tested on two examples: a boundary time dependent optimal control for a Graetz flow and a distributed optimal control governed by time dependent Stokes equations. With these two test cases the convenience of the reduced order modelling is further extended to the field of time dependent optimal control.
POD–Galerkin Model Order Reduction for Parametrized Time Dependent Linear Quadratic Optimal Control Problems in Saddle Point Formulation / Strazzullo, Maria; Ballarin, Francesco; Rozza, Gianluigi. - In: JOURNAL OF SCIENTIFIC COMPUTING. - ISSN 0885-7474. - 83:3(2020), pp. 1-35. [10.1007/s10915-020-01232-x]
POD–Galerkin Model Order Reduction for Parametrized Time Dependent Linear Quadratic Optimal Control Problems in Saddle Point Formulation
Maria Strazzullo;Gianluigi Rozza
2020
Abstract
In this work we deal with parametrized time dependent optimal control problems governed by partial differential equations. We aim at extending the standard saddle point framework of steady constraints to time dependent cases. We provide an analysis of the well-posedness of this formulation both for parametrized scalar parabolic constraint and Stokes governing equations and we propose reduced order methods as an effective strategy to solve them. Indeed, on one hand, parametrized time dependent optimal control is a very powerful mathematical model which is able to describe several physical phenomena, on the other, it requires a huge computational effort. Reduced order methods are a suitable approach to have rapid and accurate simulations. We rely on POD-Galerkin reduction over the physical and geometrical parameters of the optimality system in a space-time formulation. Our theoretical results and our methodology are tested on two examples: a boundary time dependent optimal control for a Graetz flow and a distributed optimal control governed by time dependent Stokes equations. With these two test cases the convenience of the reduced order modelling is further extended to the field of time dependent optimal control.File | Dimensione | Formato | |
---|---|---|---|
POD–Galerkin Model Order Reduction for Parametrized Time Dependent Linear Quadratic Optimal Control Problems in Saddle Point Formulation.pdf
non disponibili
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
1.6 MB
Formato
Adobe PDF
|
1.6 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
POD-Galerkin Model Order Reduction for Parametrized Time Dependent Linear Quadratic Optimal Control Problems in Saddle Point Formulation (Post-print).pdf
accesso aperto
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
PUBBLICO - Tutti i diritti riservati
Dimensione
1.49 MB
Formato
Adobe PDF
|
1.49 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2977714