We propose a Machine Learning (ML) assisted procedure to extract Vertical Cavity Surface Emitting Lasers (VCSELs) parameters from Light-Current (L-I) and S21 curves using a two-step algorithm to ensure high accuracy of the prediction. In the first step, temperature effects are not included and a Deep Neural Network (DNN) is trained on a dataset of 10000 mean-field VCSEL simulations, obtained changing nine temperature-independent parameters. The agent is used to retrieve those parameters from experimental results at a fixed temperature. Secondly, additional nine temperature-dependent parameters are analyzed while keeping as constant the extracted ones and changing the operation temperature. In this way a second dataset of 10000 simulations is created and a new agent in trained to extract those parameters from temperature-dependent L-I and S21 curves.
Two-step machine learning assisted extraction of VCSEL parameters / Khan, Ihtesham; Masood, Muhammad Umar; Tunesi, Lorenzo; Ghillino, Enrico; Carena, Andrea; Curri, Vittorio; Bardella, Paolo. - ELETTRONICO. - (2023), p. 49. (Intervento presentato al convegno SPIE Opto tenutosi a San Francisco, California, United States nel 28 January - 3 February 2023) [10.1117/12.2650220].
Two-step machine learning assisted extraction of VCSEL parameters
Khan, Ihtesham;Masood, Muhammad Umar;Tunesi, Lorenzo;Carena, Andrea;Curri, Vittorio;Bardella, Paolo
2023
Abstract
We propose a Machine Learning (ML) assisted procedure to extract Vertical Cavity Surface Emitting Lasers (VCSELs) parameters from Light-Current (L-I) and S21 curves using a two-step algorithm to ensure high accuracy of the prediction. In the first step, temperature effects are not included and a Deep Neural Network (DNN) is trained on a dataset of 10000 mean-field VCSEL simulations, obtained changing nine temperature-independent parameters. The agent is used to retrieve those parameters from experimental results at a fixed temperature. Secondly, additional nine temperature-dependent parameters are analyzed while keeping as constant the extracted ones and changing the operation temperature. In this way a second dataset of 10000 simulations is created and a new agent in trained to extract those parameters from temperature-dependent L-I and S21 curves.File | Dimensione | Formato | |
---|---|---|---|
124150P.pdf
accesso aperto
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
PUBBLICO - Tutti i diritti riservati
Dimensione
340.63 kB
Formato
Adobe PDF
|
340.63 kB | Adobe PDF | Visualizza/Apri |
2023_SPIE_Two_step_machine_learning_assisted_extraction_of_VCSEL_parameters.pdf
accesso aperto
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
PUBBLICO - Tutti i diritti riservati
Dimensione
248.97 kB
Formato
Adobe PDF
|
248.97 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2977541