Semisupervised learning techniques are gaining popularity due to their capability of building models that are effective, even when scarce amounts of labeled data are available. In this letter, we present a framework and specific tasks for self-supervised pretraining of multichannel models, such as the fusion of multispectral and synthetic aperture radar (SAR) images. We show that the proposed self-supervised approach is highly effective at learning features that correlate with the labels for land cover classification. This is enabled by an explicit design of pretraining tasks which promotes bridging the gaps between sensing modalities and exploiting the spectral characteristics of the input. In a semisupervised setting, when limited labels are available, using the proposed self-supervised pretraining, followed by supervised fine-tuning for land cover classification with SAR and multispectral data, outperforms conventional approaches such as purely supervised learning, initialization from training on ImageNet, and other recent self-supervised approaches.
Semi-Supervised Learning for Joint SAR and Multispectral Land Cover Classification / Montanaro, Antonio; Valsesia, Diego; Fracastoro, Giulia; Magli, Enrico. - In: IEEE GEOSCIENCE AND REMOTE SENSING LETTERS. - ISSN 1545-598X. - STAMPA. - 19:(2022), pp. 1-5. [10.1109/lgrs.2022.3195259]
Semi-Supervised Learning for Joint SAR and Multispectral Land Cover Classification
Antonio Montanaro;Diego Valsesia;Giulia Fracastoro;Enrico Magli
2022
Abstract
Semisupervised learning techniques are gaining popularity due to their capability of building models that are effective, even when scarce amounts of labeled data are available. In this letter, we present a framework and specific tasks for self-supervised pretraining of multichannel models, such as the fusion of multispectral and synthetic aperture radar (SAR) images. We show that the proposed self-supervised approach is highly effective at learning features that correlate with the labels for land cover classification. This is enabled by an explicit design of pretraining tasks which promotes bridging the gaps between sensing modalities and exploiting the spectral characteristics of the input. In a semisupervised setting, when limited labels are available, using the proposed self-supervised pretraining, followed by supervised fine-tuning for land cover classification with SAR and multispectral data, outperforms conventional approaches such as purely supervised learning, initialization from training on ImageNet, and other recent self-supervised approaches.File | Dimensione | Formato | |
---|---|---|---|
Semi-Supervised_Learning_for_Joint_SAR_and_Multispectral_Land_Cover_Classification.pdf
non disponibili
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
1.45 MB
Formato
Adobe PDF
|
1.45 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Self_supervised_multispectral_segmentation.pdf
accesso aperto
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
PUBBLICO - Tutti i diritti riservati
Dimensione
1.04 MB
Formato
Adobe PDF
|
1.04 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2977422