The Virtual Microgrid (VM) method is a solution for addressing challenges in Conventional Distribution Network (CDN), such as power fluctuations or load mismatches, by actively partitioning the CDN into interconnected Microgrid-style VMs. Previous studies have fewer discussions about the mutual interaction between the grid’s partition performance and Distributed Energy Resources (DERs) allocation. This paper proposes a new approach for dividing a large power grid into clusters by using the complex network theorem. The approach integrates power flow dynamic, line impedance, generator-load relations and power generator cost-efficiency into a single static weighted adjacency matrix. Meanwhile, a multi-objective Genetic Algorithm (GA) planning structure is also denoted for transforming a CDN to VMs with mutual interaction between partition and DER allocation. The proposed metric is tested in both transmission and distribution networks. The IEEE 118-bus system test shows that even with a higher value of the proposed indicator, there are fewer power exchanges between sub-networks. Meanwhile, in the 69-bus radial system tests, the GA-based co-planning method outperforms previous methods in forming more self-sufficient and more efficient interconnected VMs. An intermediate solution is suggested by implementing a trade-off between inter-VM power exchange and the operation cost.
Integrated network partitioning and DERs allocation for planning of Virtual Microgrids / Wu, Qigang; Xue, Fei; Lu, Shaofeng; Jiang, Lin; Huang, Tao; Wang, Xiaoliang; Sang, Yiyan. - In: ELECTRIC POWER SYSTEMS RESEARCH. - ISSN 0378-7796. - 216:(2023), p. 109024. [10.1016/j.epsr.2022.109024]
Integrated network partitioning and DERs allocation for planning of Virtual Microgrids
Fei Xue;Tao Huang;
2023
Abstract
The Virtual Microgrid (VM) method is a solution for addressing challenges in Conventional Distribution Network (CDN), such as power fluctuations or load mismatches, by actively partitioning the CDN into interconnected Microgrid-style VMs. Previous studies have fewer discussions about the mutual interaction between the grid’s partition performance and Distributed Energy Resources (DERs) allocation. This paper proposes a new approach for dividing a large power grid into clusters by using the complex network theorem. The approach integrates power flow dynamic, line impedance, generator-load relations and power generator cost-efficiency into a single static weighted adjacency matrix. Meanwhile, a multi-objective Genetic Algorithm (GA) planning structure is also denoted for transforming a CDN to VMs with mutual interaction between partition and DER allocation. The proposed metric is tested in both transmission and distribution networks. The IEEE 118-bus system test shows that even with a higher value of the proposed indicator, there are fewer power exchanges between sub-networks. Meanwhile, in the 69-bus radial system tests, the GA-based co-planning method outperforms previous methods in forming more self-sufficient and more efficient interconnected VMs. An intermediate solution is suggested by implementing a trade-off between inter-VM power exchange and the operation cost.File | Dimensione | Formato | |
---|---|---|---|
Integrated network partitioning and DERs allocation for planning of Virtual Microgrids.pdf
accesso riservato
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
1.15 MB
Formato
Adobe PDF
|
1.15 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2977241