The fight against the global threat of climate change requires, among other actions, to increase the penetration of renewable energy technologies and diversify the energy mix in order to support a resilient energy system that can reach net-zero greenhouse gas emissions. Offshore energy is expected to drive the energy transition, with wave energy having the major role to provide a reliable baseload and reduce the need for storage; however, its techno-economic feasibility requires reduction of costs and increase of energy conversion efficiency. This paper tackles a fundamental innovation of a device’s working principle which, jointly exploiting pendulum and gyroscopic effects, steps-up the overall conversion efficiency in real operational conditions. A recent patent proposes a technological solution that conveniently combines pendulum and gyroscopic effects in order to effectively exploit motion also outside the plane, namely in the three-dimensional space and from all degrees of freedom (DoFs). This paper tackles the endeavour of the analytical formulation of the electro-mechanical conversion system dynamics, considering at first the fully-nonlinear equation of motion, obtained through a Lagrangian approach. Consequently, incremental simplifications are applied to accommodate practical application, based on the study on the relative importance of each term in the equation of motion. Furthermore, preliminary results are produced and discussed, comparing the behaviour in response to 3-DoF to 6-DoF exploitation.
Combining pendulum and gyroscopic effects to step-up wave energy extraction in all degrees of freedom / Giorgi, G.; Carapellese, F; Bonfanti, M; Sirigu, S. A.. - 26:(2023), pp. 679-684. (Intervento presentato al convegno AIMETA) [10.21741/9781644902431-109].
Combining pendulum and gyroscopic effects to step-up wave energy extraction in all degrees of freedom
Giorgi, G.;Carapellese, F;Bonfanti, M;Sirigu, S. A.
2023
Abstract
The fight against the global threat of climate change requires, among other actions, to increase the penetration of renewable energy technologies and diversify the energy mix in order to support a resilient energy system that can reach net-zero greenhouse gas emissions. Offshore energy is expected to drive the energy transition, with wave energy having the major role to provide a reliable baseload and reduce the need for storage; however, its techno-economic feasibility requires reduction of costs and increase of energy conversion efficiency. This paper tackles a fundamental innovation of a device’s working principle which, jointly exploiting pendulum and gyroscopic effects, steps-up the overall conversion efficiency in real operational conditions. A recent patent proposes a technological solution that conveniently combines pendulum and gyroscopic effects in order to effectively exploit motion also outside the plane, namely in the three-dimensional space and from all degrees of freedom (DoFs). This paper tackles the endeavour of the analytical formulation of the electro-mechanical conversion system dynamics, considering at first the fully-nonlinear equation of motion, obtained through a Lagrangian approach. Consequently, incremental simplifications are applied to accommodate practical application, based on the study on the relative importance of each term in the equation of motion. Furthermore, preliminary results are produced and discussed, comparing the behaviour in response to 3-DoF to 6-DoF exploitation.File | Dimensione | Formato | |
---|---|---|---|
Combining_pendulum_and_gyroscopic_effects_to_step-.pdf
accesso aperto
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Creative commons
Dimensione
392.81 kB
Formato
Adobe PDF
|
392.81 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2977232