Studies on porous trailing edges, manufactured with open-cell Ni-Cr-Al foams with sub-millimeter pore sizes, have shown encouraging results for the mitigation of turbulent boundary-layer trailing-edge noise. However, the achieved noise mitigation is typically dependent upon the pore geometry, which is fixed after manufacturing. In this study, a step to control the aeroacoustics effect of such porous trailing edges is taken, by applying a polymeric coating onto the internal foam structure. Using this method, the internal topology of the foam is maintained, but its permeability is significantly affected. This study opens a new possibility of aeroacoustic control, since the polymeric coatings are temperature responsive, and their thickness can be controlled inside the foam. Porous metallic foams with pore sizes of 580, 800, and 1200 μm are (internally) spray-coated with an elastomeric coating. The uncoated and coated foams are characterized in terms of reduced porosity, average coating thickness and air-flow resistance. Subsequently, the coated and uncoated foams are employed to construct tapered inserts installed at the trailing edge of an NACA 0018 airfoil. The noise mitigation performances of the coated metal foams are compared to those of uncoated metal foams with either similar pore size or permeability value, and both are compared to the solid trailing edge reference case. Results show that that the permeability of the foam can be easily altered by the application of an internal coating on the metallic foams. The noise reduction characteristics of the coated foams are similar to equivalent ones with metallic materials, provided that the coating material is rigid enough not to plastically deform under flow conditions.

Role of polymeric coating on metallic foams to control the aeroacoustic noise reduction of airfoils with permeable trailing edges / Hedayati, R.; Carpio, A. R.; Luesutthiviboon, S.; Ragni, D.; Avallone, F.; Casalino, D.; van der Zwaag, S.. - In: MATERIALS. - ISSN 1996-1944. - 12:7(2019), p. 1087. [10.3390/ma12071087]

Role of polymeric coating on metallic foams to control the aeroacoustic noise reduction of airfoils with permeable trailing edges

Avallone F.;Casalino D.;
2019

Abstract

Studies on porous trailing edges, manufactured with open-cell Ni-Cr-Al foams with sub-millimeter pore sizes, have shown encouraging results for the mitigation of turbulent boundary-layer trailing-edge noise. However, the achieved noise mitigation is typically dependent upon the pore geometry, which is fixed after manufacturing. In this study, a step to control the aeroacoustics effect of such porous trailing edges is taken, by applying a polymeric coating onto the internal foam structure. Using this method, the internal topology of the foam is maintained, but its permeability is significantly affected. This study opens a new possibility of aeroacoustic control, since the polymeric coatings are temperature responsive, and their thickness can be controlled inside the foam. Porous metallic foams with pore sizes of 580, 800, and 1200 μm are (internally) spray-coated with an elastomeric coating. The uncoated and coated foams are characterized in terms of reduced porosity, average coating thickness and air-flow resistance. Subsequently, the coated and uncoated foams are employed to construct tapered inserts installed at the trailing edge of an NACA 0018 airfoil. The noise mitigation performances of the coated metal foams are compared to those of uncoated metal foams with either similar pore size or permeability value, and both are compared to the solid trailing edge reference case. Results show that that the permeability of the foam can be easily altered by the application of an internal coating on the metallic foams. The noise reduction characteristics of the coated foams are similar to equivalent ones with metallic materials, provided that the coating material is rigid enough not to plastically deform under flow conditions.
2019
File in questo prodotto:
File Dimensione Formato  
materials-12-01087 (1).pdf

accesso aperto

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 2.98 MB
Formato Adobe PDF
2.98 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2976702