Vertical-axis wind turbines have the potential to be installed nearby urban areas, where noise regulations are a constraint. Accurate modelling of the far-field noise with low-order fidelity methods is essential to account for noise early in the design phase. The challenge for the vertical-axis wind turbine is the unsteady azimuthal variation of the flow over the blades, which makes the prediction of the far-field noise complex with low-fidelity methods. In this paper, the state-of-the-art of low-fidelity methods are assessed against scale-resolving high-fidelity numerical simulations of a realistic vertical-axis wind turbine carried out with the lattice-Boltzmann very large eddy simulations method. High-fidelity numerical data are validated against experimental aerodynamics data of the same vertical-axis wind turbine. The low-fidelity method is based on the actuator cylinder model coupled with semi-empirical models for airfoil-self noise and turbulence-interaction noise. Results show a good agreement between the high-fidelity simulations and the low-fidelity model at low frequencies (i.e. between 2 × 10 1 Hz and 1 × 10 2 Hz), where turbulence-interaction noise is the dominant noise source. At higher frequencies, the airfoil-self noise dominates and existing methods, based on steady airfoils, do not correctly predict noise. This paper shows that the presented low-fidelity model predicts the aerodynamics and the aeroacoustics of the turbine with an acceptable accuracy for a design stage. However, improvements are needed to better predict the far-field noise for blades in an unsteady field.

Assessment through high-fidelity simulations of a low-fidelity noise prediction tool for a vertical-axis wind turbine / Brandetti, Livia; Avallone, Francesco; De Tavernier, Delphine; Leblanc, Bruce; Simão Ferreira, Carlos; Casalino, Damiano. - In: JOURNAL OF SOUND AND VIBRATION. - ISSN 1095-8568. - 547:117486(2023), p. 117486. [10.1016/j.jsv.2022.117486]

Assessment through high-fidelity simulations of a low-fidelity noise prediction tool for a vertical-axis wind turbine

Francesco Avallone;Damiano Casalino
2023

Abstract

Vertical-axis wind turbines have the potential to be installed nearby urban areas, where noise regulations are a constraint. Accurate modelling of the far-field noise with low-order fidelity methods is essential to account for noise early in the design phase. The challenge for the vertical-axis wind turbine is the unsteady azimuthal variation of the flow over the blades, which makes the prediction of the far-field noise complex with low-fidelity methods. In this paper, the state-of-the-art of low-fidelity methods are assessed against scale-resolving high-fidelity numerical simulations of a realistic vertical-axis wind turbine carried out with the lattice-Boltzmann very large eddy simulations method. High-fidelity numerical data are validated against experimental aerodynamics data of the same vertical-axis wind turbine. The low-fidelity method is based on the actuator cylinder model coupled with semi-empirical models for airfoil-self noise and turbulence-interaction noise. Results show a good agreement between the high-fidelity simulations and the low-fidelity model at low frequencies (i.e. between 2 × 10 1 Hz and 1 × 10 2 Hz), where turbulence-interaction noise is the dominant noise source. At higher frequencies, the airfoil-self noise dominates and existing methods, based on steady airfoils, do not correctly predict noise. This paper shows that the presented low-fidelity model predicts the aerodynamics and the aeroacoustics of the turbine with an acceptable accuracy for a design stage. However, improvements are needed to better predict the far-field noise for blades in an unsteady field.
File in questo prodotto:
File Dimensione Formato  
2023BrandettiJSV.pdf

accesso aperto

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 3.34 MB
Formato Adobe PDF
3.34 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2976696