Film cooling is the main technology adopted to guarantee safe working conditions of vanes and blades in high-pressure turbine stages. Recent experimental investigations highlighted that unsteady interaction between the coolant jet and the hot gas contributes to the lateral dispersion of cold flow over the cooled surface. Hence, considering the harsh working environment of these devices, a fair prediction of their thermal performance requires accurate modelling of the interaction between cold and hot gases. In this paper, an experimental setup originally studied at the University of Karlsruhe during the EU-funded TATEF project is numerically investigated to determine the influence of high-frequency unsteady fluctuations on the thermal performance of the cooling device. The case study consists of a film cooling hole positioned on a flat plate, working at engine-like conditions. Unsteady Reynolds-Averaged Navier-Stokes equations are solved for a compressible flow in transonic regime on a hybrid mesh. Turbulence is modelled using the Scale-Adaptive Simulation method to correctly predict the interaction between the coolant and the main flow. Three different sets of conditions are analyzed by varying the blowing ratio from 0.5 to 1.5, aiming at highlighting the unsteady mechanisms occurring for different penetrations of the coolant into the hot gas. Time-averaged unsteady results are compared with the available experimental data to determine to what extent hybrid modelling allows for correctly predicting film cooling performance at different blowing ratios. Instantaneous solutions are then analyzed to investigate the time-dependent flow field in the vicinity of the jet exit section and on the cooled surface. Spectral Proper Orthogonal Decomposition is enforced to identify the principal fluctuation modes associated with the time-dependent coolant penetration into the main flow.

IDENTIFICATION OF FLUCTUATION MODES FOR A CYLINDRICAL FILM COOLING HOLE USING THE SPECTRAL PROPER ORTHOGONAL DECOMPOSITION METHOD / Rosafio, N.; De Cosmo, G.; Salvadori, S.; Carnevale, M.; Misul, D. A.. - ELETTRONICO. - 6-A:(2022), pp. 1-11. (Intervento presentato al convegno ASME Turbo Expo 2022: Turbomachinery Technical Conference and Exposition, GT 2022 tenutosi a Rotterdam, The Netherlands nel June 13-17, 2022) [10.1115/GT2022-79528].

IDENTIFICATION OF FLUCTUATION MODES FOR A CYLINDRICAL FILM COOLING HOLE USING THE SPECTRAL PROPER ORTHOGONAL DECOMPOSITION METHOD

Rosafio N.;De Cosmo G.;Salvadori S.;Misul D. A.
2022

Abstract

Film cooling is the main technology adopted to guarantee safe working conditions of vanes and blades in high-pressure turbine stages. Recent experimental investigations highlighted that unsteady interaction between the coolant jet and the hot gas contributes to the lateral dispersion of cold flow over the cooled surface. Hence, considering the harsh working environment of these devices, a fair prediction of their thermal performance requires accurate modelling of the interaction between cold and hot gases. In this paper, an experimental setup originally studied at the University of Karlsruhe during the EU-funded TATEF project is numerically investigated to determine the influence of high-frequency unsteady fluctuations on the thermal performance of the cooling device. The case study consists of a film cooling hole positioned on a flat plate, working at engine-like conditions. Unsteady Reynolds-Averaged Navier-Stokes equations are solved for a compressible flow in transonic regime on a hybrid mesh. Turbulence is modelled using the Scale-Adaptive Simulation method to correctly predict the interaction between the coolant and the main flow. Three different sets of conditions are analyzed by varying the blowing ratio from 0.5 to 1.5, aiming at highlighting the unsteady mechanisms occurring for different penetrations of the coolant into the hot gas. Time-averaged unsteady results are compared with the available experimental data to determine to what extent hybrid modelling allows for correctly predicting film cooling performance at different blowing ratios. Instantaneous solutions are then analyzed to investigate the time-dependent flow field in the vicinity of the jet exit section and on the cooled surface. Spectral Proper Orthogonal Decomposition is enforced to identify the principal fluctuation modes associated with the time-dependent coolant penetration into the main flow.
2022
978-0-7918-8603-8
File in questo prodotto:
File Dimensione Formato  
v06at12a006-gt2022-79528.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 5.47 MB
Formato Adobe PDF
5.47 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2976332