We propose a machine learning-based framework to extract circuit-level VCSEL model parameters. The proposed approach predicts the parameters exploiting the light-current curve and small-signal modulation responses with two steps at constant and variable temperature, respectively. Promising results are achieved in terms of relative prediction error.
Machine Learning Assisted Extraction of Vertical Cavity Surface Emitting Lasers Parameters / Khan, Ihtesham; Tunesi, Lorenzo; Masood, Muhammad Umar; Ghillino, Enrico; Carena, Andrea; Curri, Vittorio; Bardella, Paolo. - ELETTRONICO. - (2022), pp. 1-2. (Intervento presentato al convegno 2022 IEEE Photonics Conference (IPC) tenutosi a Vancouver, BC, Canada nel 13-17 November 2022) [10.1109/IPC53466.2022.9975585].
Machine Learning Assisted Extraction of Vertical Cavity Surface Emitting Lasers Parameters
Khan, Ihtesham;Tunesi, Lorenzo;Masood, Muhammad Umar;Carena, Andrea;Curri, Vittorio;Bardella, Paolo
2022
Abstract
We propose a machine learning-based framework to extract circuit-level VCSEL model parameters. The proposed approach predicts the parameters exploiting the light-current curve and small-signal modulation responses with two steps at constant and variable temperature, respectively. Promising results are achieved in terms of relative prediction error.File | Dimensione | Formato | |
---|---|---|---|
Machine_Learning_Assisted_Extraction_of_Vertical_Cavity_Surface_Emitting_Lasers_Parameters.pdf
accesso riservato
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
307.01 kB
Formato
Adobe PDF
|
307.01 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
2022_IPC_Machine_Learning_Assisted_Extraction_of_VCSEL_Parameters (4).pdf
accesso aperto
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
Pubblico - Tutti i diritti riservati
Dimensione
230.99 kB
Formato
Adobe PDF
|
230.99 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2976007