We propose a machine learning-based framework to extract circuit-level VCSEL model parameters. The proposed approach predicts the parameters exploiting the light-current curve and small-signal modulation responses with two steps at constant and variable temperature, respectively. Promising results are achieved in terms of relative prediction error.

Machine Learning Assisted Extraction of Vertical Cavity Surface Emitting Lasers Parameters / Khan, Ihtesham; Tunesi, Lorenzo; Masood, Muhammad Umar; Ghillino, Enrico; Carena, Andrea; Curri, Vittorio; Bardella, Paolo. - ELETTRONICO. - (2022), pp. 1-2. (Intervento presentato al convegno 2022 IEEE Photonics Conference (IPC) tenutosi a Vancouver, BC, Canada nel 13-17 November 2022) [10.1109/IPC53466.2022.9975585].

Machine Learning Assisted Extraction of Vertical Cavity Surface Emitting Lasers Parameters

Khan, Ihtesham;Tunesi, Lorenzo;Masood, Muhammad Umar;Carena, Andrea;Curri, Vittorio;Bardella, Paolo
2022

Abstract

We propose a machine learning-based framework to extract circuit-level VCSEL model parameters. The proposed approach predicts the parameters exploiting the light-current curve and small-signal modulation responses with two steps at constant and variable temperature, respectively. Promising results are achieved in terms of relative prediction error.
2022
978-1-6654-3487-4
File in questo prodotto:
File Dimensione Formato  
Machine_Learning_Assisted_Extraction_of_Vertical_Cavity_Surface_Emitting_Lasers_Parameters.pdf

accesso riservato

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 307.01 kB
Formato Adobe PDF
307.01 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
2022_IPC_Machine_Learning_Assisted_Extraction_of_VCSEL_Parameters (4).pdf

accesso aperto

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Pubblico - Tutti i diritti riservati
Dimensione 230.99 kB
Formato Adobe PDF
230.99 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2976007