This paper presents the characterization of the magnetic properties of laminated cores for electrical machines at ambient and cryogenic temperature. Silicon-iron stator cores of different steel grades are characterized experimentally at room temperature and when immersed in a liquid nitrogen atmosphere. The magnetic characterizations involve the measurement of the normal magnetization curve, and the core losses in a wide range of frequencies and magnetic flux densities. The separation of the losses into their physical components is carried out with an energy-based approach aiming at a thorough analysis of each loss contribution. The results show that the cryogenic temperature does not significantly impact the magnetization characteristic of the material, regardless the tested steel grade. The core losses generally increase at cryogenic temperature. The separation of the losses into components shows that the hysteresis contribution is not much affected by the cryogenic temperature; the global dynamic losses increase at a rate that depends on the steel grade instead, at least in the examined frequency and flux density ranges.
Iron Loss Characterization in Laminated Cores at Room and Liquid Nitrogen Temperature / Biasion, Marco; Santos Perdigao Peixoto, Ines; Fernandes, Joao F. P.; Vaschetto, Silvio; Bramerdorfer, Gerd; Cavagnino, Andrea. - ELETTRONICO. - (2022), pp. 1-8. (Intervento presentato al convegno 2022 IEEE Energy Conversion Congress and Exposition (ECCE) tenutosi a Detroit, MI, USA nel 09-13 October 2022) [10.1109/ECCE50734.2022.9948041].
Iron Loss Characterization in Laminated Cores at Room and Liquid Nitrogen Temperature
Biasion, Marco;Santos Perdigao Peixoto, Ines;Vaschetto, Silvio;Cavagnino, Andrea
2022
Abstract
This paper presents the characterization of the magnetic properties of laminated cores for electrical machines at ambient and cryogenic temperature. Silicon-iron stator cores of different steel grades are characterized experimentally at room temperature and when immersed in a liquid nitrogen atmosphere. The magnetic characterizations involve the measurement of the normal magnetization curve, and the core losses in a wide range of frequencies and magnetic flux densities. The separation of the losses into their physical components is carried out with an energy-based approach aiming at a thorough analysis of each loss contribution. The results show that the cryogenic temperature does not significantly impact the magnetization characteristic of the material, regardless the tested steel grade. The core losses generally increase at cryogenic temperature. The separation of the losses into components shows that the hysteresis contribution is not much affected by the cryogenic temperature; the global dynamic losses increase at a rate that depends on the steel grade instead, at least in the examined frequency and flux density ranges.File | Dimensione | Formato | |
---|---|---|---|
Iron_Loss_Characterization_in_Laminated_Cores_at_Room_and_Liquid_Nitrogen_Temperature.pdf
accesso riservato
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
1.3 MB
Formato
Adobe PDF
|
1.3 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
2022125685.pdf
accesso aperto
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
Pubblico - Tutti i diritti riservati
Dimensione
1.24 MB
Formato
Adobe PDF
|
1.24 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2975807