This paper validates a calibration procedure applied on a microwave imaging (MWI) kernel based on the combination of pre-computed simulated data and available S-parameters measurements. The assessed technique compensates for the image degradation caused by mild and non-modeled features of the imaging device, such as the unavoidable manufacturing discrepancies in the antenna array. The testing considers a synthetically mimicked experimental scenario of a hemorrhagic stroke condition and a realistic scanner prototype. This approach allows a thorough comparative assessment of the calibration effect on the electric field estimation used by the MWI algorithm, hardly achievable with measurements. The results show the capability of the calibration procedure to reduce the retrieved images’ distortions and artifacts compared to the non-calibrated approach, being an essential milestone toward its application in real-life scenarios.
Hybrid imaging kernel calibration applied on microwave scanner for brain stroke monitoring / Origlia, Cristina; Rodriguez-Duarte, David O.; Tobon Vasquez, Jorge A.; Vipiana, Francesca. - ELETTRONICO. - (2022), pp. 1-3. (Intervento presentato al convegno 2022 IEEE Conference on Antenna Measurements and Applications (CAMA) tenutosi a Guangzhou, China nel 14-17 December 2022) [10.1109/CAMA56352.2022.10002576].
Hybrid imaging kernel calibration applied on microwave scanner for brain stroke monitoring
Origlia, Cristina;Rodriguez-Duarte, David O.;Tobon Vasquez, Jorge A.;Vipiana, Francesca
2022
Abstract
This paper validates a calibration procedure applied on a microwave imaging (MWI) kernel based on the combination of pre-computed simulated data and available S-parameters measurements. The assessed technique compensates for the image degradation caused by mild and non-modeled features of the imaging device, such as the unavoidable manufacturing discrepancies in the antenna array. The testing considers a synthetically mimicked experimental scenario of a hemorrhagic stroke condition and a realistic scanner prototype. This approach allows a thorough comparative assessment of the calibration effect on the electric field estimation used by the MWI algorithm, hardly achievable with measurements. The results show the capability of the calibration procedure to reduce the retrieved images’ distortions and artifacts compared to the non-calibrated approach, being an essential milestone toward its application in real-life scenarios.File | Dimensione | Formato | |
---|---|---|---|
CAMA2022_Cal_CO.pdf
accesso aperto
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
PUBBLICO - Tutti i diritti riservati
Dimensione
1.03 MB
Formato
Adobe PDF
|
1.03 MB | Adobe PDF | Visualizza/Apri |
CAMA2022_Cal_CO_IEEE.pdf
non disponibili
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
1.06 MB
Formato
Adobe PDF
|
1.06 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2974760