We study an anisotropic version of the Shubin calculus of pseudodifferential operators on R-d Anisotropic symbols and Gabor wave front sets are defined in terms of decay or growth along curves in phase space of power type parametrized by one positive parameter that distinguishes space and frequency variables. We show that this gives subcalculi of Shubin's isotropic calculus, and we show a microlocal as well as a microelliptic inclusion in the framework. Finally we prove an inclusion for the anisotropic Gabor wave front set of chirp type oscillatory functions with a real polynomial phase function.
Anisotropic global microlocal analysis for tempered distributions / Rodino, L.; Wahlberg, P.. - In: MONATSHEFTE FÜR MATHEMATIK. - ISSN 0026-9255. - 202:2(2023), pp. 397-434. [10.1007/s00605-022-01812-z]
Anisotropic global microlocal analysis for tempered distributions
Wahlberg P.
2023
Abstract
We study an anisotropic version of the Shubin calculus of pseudodifferential operators on R-d Anisotropic symbols and Gabor wave front sets are defined in terms of decay or growth along curves in phase space of power type parametrized by one positive parameter that distinguishes space and frequency variables. We show that this gives subcalculi of Shubin's isotropic calculus, and we show a microlocal as well as a microelliptic inclusion in the framework. Finally we prove an inclusion for the anisotropic Gabor wave front set of chirp type oscillatory functions with a real polynomial phase function.File | Dimensione | Formato | |
---|---|---|---|
RodinoWahlberg2.pdf
Open Access dal 17/12/2023
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
Pubblico - Tutti i diritti riservati
Dimensione
435.55 kB
Formato
Adobe PDF
|
435.55 kB | Adobe PDF | Visualizza/Apri |
anisotropictempered.pdf
accesso riservato
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
530.65 kB
Formato
Adobe PDF
|
530.65 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2974734