We experimentally demonstrate a nonlinear digital pre-distorter for PAM-M shaping in VCSEL+MMF IM-DD links able to operate at a generic baud rate using a fractional sample-per-symbol Neural Network. We focus on efficient and practical multi-rate operation, signal amplitude constraints, and linear equalizer at the receiver.

Nonlinear Pre-distortion through a Multi-rate End-to-end Learning Approach over VCSEL-MMF IM-DD Optical Links / Minelli, Leonardo; Forghieri, Fabrizio; Gaudino, Roberto. - ELETTRONICO. - (2022), pp. 1-4. (Intervento presentato al convegno 2022 European Conference on Optical Communication (ECOC) tenutosi a Basel, Switzerland nel 18-22 September 2022).

Nonlinear Pre-distortion through a Multi-rate End-to-end Learning Approach over VCSEL-MMF IM-DD Optical Links

Minelli Leonardo;Gaudino Roberto
2022

Abstract

We experimentally demonstrate a nonlinear digital pre-distorter for PAM-M shaping in VCSEL+MMF IM-DD links able to operate at a generic baud rate using a fractional sample-per-symbol Neural Network. We focus on efficient and practical multi-rate operation, signal amplitude constraints, and linear equalizer at the receiver.
2022
978-1-957171-15-9
File in questo prodotto:
File Dimensione Formato  
ECOC2022_Multi-rate_E2E_for_NonlinearDPD_final.pdf

accesso aperto

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 488.93 kB
Formato Adobe PDF
488.93 kB Adobe PDF Visualizza/Apri
Minelli-Nonlinear.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 4.14 MB
Formato Adobe PDF
4.14 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2974492