A characteristic feature of tumor invasion is the destruction of the healthy tissue surrounding it. Open space is generated, which invasive tumor cells can move into. One such mechanism is the urokinase plasminogen system (uPS), which is found in many processes of tissue reorganization. Lolas, Chaplain and collaborators have developed a series of mathematical models for the uPS and tumor invasion. These models are based upon degradation of the extracellular material through plasmid plus chemotaxis and haptotaxis. In this paper we consider the uPS invasion models in one-space dimension and we identify a condition under which this cancer invasion model converges to a chemotaxis model with logistic growth. This condition assumes that the density of the extracellular material is not too large. Our result shows that the complicated spatio-temporal patterns, which were observed by Lolas and Chaplain et al. are organized by the chaotic attractor of the logistic chemotaxis system. Our methods are based on energy estimates, where, for convergence, we needed to find lower estimates in Lγ for 0 < γ < 1. This is a new method for these types of PDE. © 2013 World Scientific Publishing Company.

Convergence of a cancer invasion model to a logistic chemotaxis model / Hillen, T.; Painter, K. J.; Winkler, M.. - In: MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES. - ISSN 0218-2025. - 23:1(2013), pp. 165-198. [10.1142/S0218202512500480]

Convergence of a cancer invasion model to a logistic chemotaxis model

Hillen T.;Painter K. J.;
2013

Abstract

A characteristic feature of tumor invasion is the destruction of the healthy tissue surrounding it. Open space is generated, which invasive tumor cells can move into. One such mechanism is the urokinase plasminogen system (uPS), which is found in many processes of tissue reorganization. Lolas, Chaplain and collaborators have developed a series of mathematical models for the uPS and tumor invasion. These models are based upon degradation of the extracellular material through plasmid plus chemotaxis and haptotaxis. In this paper we consider the uPS invasion models in one-space dimension and we identify a condition under which this cancer invasion model converges to a chemotaxis model with logistic growth. This condition assumes that the density of the extracellular material is not too large. Our result shows that the complicated spatio-temporal patterns, which were observed by Lolas and Chaplain et al. are organized by the chaotic attractor of the logistic chemotaxis system. Our methods are based on energy estimates, where, for convergence, we needed to find lower estimates in Lγ for 0 < γ < 1. This is a new method for these types of PDE. © 2013 World Scientific Publishing Company.
File in questo prodotto:
File Dimensione Formato  
hpw2013.pdf

accesso aperto

Tipologia: 1. Preprint / submitted version [pre- review]
Licenza: Creative commons
Dimensione 919.35 kB
Formato Adobe PDF
919.35 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2974233