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Convergence of a cancer invasion model

to a logistic chemotaxis model

Thomas Hillen
∗

Kevin J Painter
#

Michael Winkler
‡

Abstract

A characteristic feature of tumour invasion is the destruction of the healthy tissue surrounding
it. Open space is generated, which invasive tumour cells can move into. One such mechanism
is the urokinase plasminogen system (uPS), which is found in many processes of tissue reor-
ganisation. Lolas, Chaplain and collaborators have developed a series of mathematical models
for the uPS and tumour invasion. These models are based upon degradation of the extra-
cellular material through plasmid plus chemotaxis and haptotaxis. In this paper we consider
the uPS invasion models in one space dimension and we identify a condition under which this
cancer invasion model converges to a chemotaxis model with logistic growth. This condition
assumes that the density of the extracellular material is not too large. Our result shows that
the complicated spatio-temporal patterns, which were observed by Lolas and Chaplain et al.,
are organized by the chaotic attractor of the logistic chemotaxis system.

Our methods are based on energy estimates, where, for convergence, we needed to find
lower estimates in Lγ for 0 < γ < 1. This is a new method for these types of PDE.
Key words: chemotaxis, haptotaxis, cancer invasion
AMS Classification: 35B33, 35B45, 35K55, 35K57, 92C17

1 Introduction

Tumour development and progression is a highly complex process characterised by the accumula-
tion of various hallmark features including abnormal growth, genetic instabilities, interactions with
the micro-environment and immune system, invasion and metastasis (see [5]). The latter in partic-
ular, invasion and metastasis, is associated with a grave prognosis for the patient. Mathematical
modelling of cancer has emerged into a large discipline, with models developed to describe these
many facets of cancer development, aiming to shed fresh impetus on tumour formation, progression
and treatment.

In this paper we focus on a specific model for tumour invasion, developed by Chaplain and cowork-
ers over a series of papers [2, 3, 4] and based on the urokinase plasminogen system. The urokinase
plasminogen system is considered as a prototypical chemical network playing a key role in many
biological processes where significant remodelling of the extracellular matrix (ECM) occurs, for ex-
ample wound healing, embryonic development and cancer invasion. A key component is plasmin,
which degrades the ECM and permits cancer cells to break free from the main tumour mass and
invade new areas. Five of the major players in the urokinase plasminogen system are the urokinase
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plasminogen activator uPA, the urokinase plasminogen receptor uPAR, the plasminogen activator
inhibitor PAI-1, plasmin, and the ECM material vitronectin VN, the latter a glue-like substance
found in the ECM. uPA activates plasminogen, which creates plasmin, a proteolytic enzyme which
is able to degrade ECM. Invasive cancer cells are equipped with uPA receptors, uPAR, which both
bind to focal adhesion points, thereby anchoring the cell to the ECM (in particular to VN), as well
as binding uPA and stimulating the local release of plasmin at the leading edge of the moving cell.
The plasmin degrades ECM at the leading edge, creating the space for a cell to move into. The
inhibitor PAI-1 inhibits plasmin production and, in high enough concentrations, can halt ECM
degradation. In low concentrations, however, it can facilitate cell movement through detaching the
cell-ECM adhesions at the cell rear, thereby releasing the brakes and allowing movement forward.
A more detailed description of the above described uPA dynamics can be found in Chaplain and
Lolas [3].

The above dynamics were incorporated in [3] into a reaction-advection-diffusion equation system
composed of 5 variables: an equation for the cancer cells that describes their growth, random,
chemotactic and haptotactic movement and variables for the ECM, uPA, PAI-1, and plasmin.
In simulations a front of cells invading into the ECM was observed, followed by complex spatio-
temporal dynamics suggested to arise from ”the complex interplay between proliferative effects –
cancer cell proliferation and matrix remodelling – and gradient driven migration (chemotaxis and
haptotaxis)” ([4] p. 1726). Chaplain and Lolas argue that there is a conceptual similarity between
the irregular patterns from the model and certain forms of in vivo tumour morphology, which can
be irregular in shape and form with tumour-free regions separating tumour micro-colonies. The
origin of the complex dynamics is the motivation for the present study where, in fact, we find
that they are fundamentally driven by cell proliferation and chemotaxis with ECM remodelling
and haptotaxis playing only a minor role. In [4] a subsystem composed of three equations was
studied in more depth, given in (1.1) below and focussing on the dynamics between cancer cells,
u(x, t), uPA, v(x, t), and the ECM, w(x, t). Chaplain and Lolas study the invasion patterns, but
they do not explore complex spatio-temporal patterns for this model; here we will show that this
three-component model also possesses spatio-temporal dynamics. Andasari et al [2] study the
original five component model in greater detail, computing the unstable modes and determining a
relationship between model parameters and observed patterns.

The patterns shown by the models described above bear a close superficial resemblance to the
spatio-temporal chaos found for chemotaxis models in [12], suggesting a close correlation between
the models. Here we will demonstrate that the three component model does in fact, in an appro-
priate sense, converge to the chemotaxis model with logistic growth studied in [12] under certain
conditions and, since the chemotaxis model with logistic growth has a compact global attractor
[11, 1], we can conclude that this attractor is the organising centre for the complex dynamics of
the three-component urokinase plasminogen system. While we suspect that the same mechanisms
are the driving force behind the complex dynamics of the five-component system of Lolas and
Chaplain [3], a rigorous proof has not yet been obtained.
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1.1 The Models

In the spatially one-dimensional framework, the three-component urokinase plasminogen invasion
model from Lolas and Chaplain (which we call the cancer invasion model, for short) is given as































ut = D1uxx − χ(uvx)x − ξ(uwx)x + ru − µu2 − λuw, x ∈ Ω, t > 0,

vt = D2vxx − av + bu, x ∈ Ω, t > 0,

wt = −ρvw, x ∈ Ω, t > 0,

ux(x, t) = vx(x, t) = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), w(x, 0) = w0(x), x ∈ Ω,

(1.1)

where Ω is a bounded real interval. The parameters D1, D2, χ, ξ, r, µ, a, b and ρ are supposed to be
positive and λ to be nonnegative. The variables (u, v, w) describe the densities or concentrations
of tumour cells, uPA, and ECM, respectively. The initial data u0 ∈ C0(Ω̄), v0 ∈ W 1,∞(Ω) and
w0 ∈ C1(Ω̄) are prescribed nonnegative functions.
It is noted that the original model by Chaplain and Lolas [3] has an additional term to describe
the re-modelling of the healthy tissue; in that case the equation for w reads

wt = −ρvw + µ2w(1 − w)

with some µ2 > 0. In their simulation examples the value for µ2 is one to two orders of magnitude
smaller than ρ and, for our study, we have assumed that there is no regeneration of ECM, i.e.
µ2 = 0. This assumption is crucial for our results and allows us to show that system (1.1) can
have chaotic dynamics. We perform some simulations for nonzero µ2 later, showing that at least
for small µ2 the dynamics are essentially the same. However a rigorous analytical result for the
case of µ2 6= 0 is left for future investigations.

The associated chemotaxis model with logistic growth reads











Ut = D1Uxx − χ(UVx)x + rU − µU2, x ∈ Ω, t > 0,

Vt = D2Vxx − aV + bU, x ∈ Ω, t > 0,

Ux(x, t) = Vx(x, t) = 0, x ∈ ∂Ω, t > 0,

(1.2)

with corresponding initial conditions for U and V . An overview about chemotaxis modelling with
PDEs can be found in [6].

In Figure 1 we show simulations of these models (1.1) and (1.2) for the parameter choices D1 =
D2 = λ = r = µ = a = b = ρ = 1 and ξ = 10, with varying values of χ. In the first row (a) we
choose χ = 5 and in the second row (b) χ = 15. The first three frames (a1)-(a3) and (b1)-(b3)
show the solution (u, v, w) of the cancer invasion model (1.1) and frames (a4), (a5) and (b4), (b5)
show the solution (U, V ) of the chemotaxis model (1.2). For the plasminogen model (a1)-(a3),
and (b1)-(b3), we see an invasion front which degrades the ECM, leaving either a stationary (case
(a)) or evolving (case (b)) pattern of cancer cell microaggregates in its wake. The patterns of the
corresponding chemotaxis model in (a4),(a5) and (b4),(b5) are basically identical to those that
eventually arise from the cancer invasion model despite the distinct initial behaviour. In [12] we
studied these patterns for the chemotaxis model in detail and identified a mechanism of merging
and emerging of local peaks, showing that for certain regions of parameter space the dynamics are
chaotic. Consequently we expect the same to be true for the cancer invasion model.

3



(a2) (a3) (a4) (a5)(a1)

(b2) (b3) (b4) (b5)(b1)

Figure 1: Numerical simulations comparing the spatio-temporal evolution of the plasminogen
model (1.1) with the chemotaxis model (1.2). Each frame plots the space (horizontal) – time
(vertical) density map, using the colour scale at the top of each frame. The parameter values are
D1 = D2 = λ = r = µ = a = b = ρ = 1 and ξ = 10, with χ = 5 in the first row (a), and χ = 15 in
the second row (b). Figures (a1)–(a3) and (b1)–(b3) show the cancer invasion model (1.1) plotting
the cell density u in (a1),(b1), the chemoattractant v in (a2),(b2), and the ECM w in (a3),(b3).
Figures (a4),(a5) and (b4),(b5) show the corresponding behaviour of the chemotaxis model (1.2)
for the cell density u in (a4), (b4) and the chemoattractant v in (a5),(b5). The initial conditions
were set at u0(x) = v0(x) = exp(−x2) and w0(x) = 1− u0(x) for the cancer model, and u0(x) = 1,
v(x, 0) = 1 + ǫ(x) (where ǫ(x) denotes a small random spatial perturbation) for the chemotaxis
model. Numerical simulations were performed as described at the start of Section 6 on the spatial
domain [0, 100] with a spatial discretisation of ∆x = 0.05 and error tolerances of 10−8.

4



1.2 Main Results

The current literature provides only a few results on the qualitative behaviour in models of type
(1.1). This is in sharp contrast to the chemotaxis-growth system (1.2) and its n-dimensional
analogue; indeed, it is known that solutions to the latter remain bounded when either n ≤ 2
([11]), or when n ≥ 3 and µ is large ([20]). In the case where n = 2 more detailed information
is available on their dynamics, including the existence of global and exponential attractors and
their dimensions ([11], [10]). The crucial mathematical novelty in (1.1) consists of the interaction
with the non-diffusive ECM component w. As observed in previous studies on haptotaxis-only
systems, this may carry with it numerous technical obstacles in not only the existence theory, but
also the qualitative study of solutions (cf. [9], [8] and [17], for instance). Accordingly, analytical
investigations into the three-component system (1.1) have so concentrated to date on the global
existence of solutions. Indeed, solutions are known to be global in time when either n ≤ 2, or when
n = 3 and µ and λ are large enough. This has recently been shown in a series of papers which also
address some variants involving nonlinear cell diffusion, as suggested in [3] (see [13], [15], [14], [16]
and the references therein).

The first objective of the present paper is to address the boundedness question for (1.1). Our main
result in this direction is the following.

Theorem 1.1 Let Ω ⊂ R be an open bounded interval. Suppose that D1, D2, ρ, a and µ are positive,
and that χ, ξ, r, λ and b are nonnegative. Then for any nonnegative u0 ∈ C0(Ω̄), v0 ∈ W 1,∞(Ω)
and w0 ∈ C1(Ω̄) satisfying w0x = 0 on ∂Ω, the corresponding solution (u, v, w) of (1.1) is bounded
in Ω× (0,∞).

Let us mention here that, as it stands, our proof appears to apply only to space dimension one.
Thus, the boundedness question in the higher-dimensional version of (1.1) has to be left as an open
problem at present.

Secondly, we shall address the question as to whether, and in which sense, the third solution
component w decays for large times. In that case the tumour would invade the healthy tissue and
completely degrade the ECM. A linear analysis of homogeneous steady states (see Section 5.1)
shows that the tumour can only invade if

λw∗ < r,

where w∗ denotes the ECM density in healthy tissue. This condition is made more precise in our
second result:

Theorem 1.2 Let λ ≥ 0, and assume that u0 6≡ 0 and

λ‖w0‖L∞(Ω) ≤ r. (1.3)

Then there exists θ > 0 with the property that for all q ∈ [2,∞) one can find C > 0 such that

‖w(·, t)‖W 1,q(Ω) ≤ Ce−θt for all t > 0.

Hence, in this case, all ECM is degraded and the solution of the cancer invasion model (1.1)
asymptotically behaves as if the term w in (1.1) was absent, that is, like a solution of the pure
chemotaxis system (1.2). As shown numerically in [12], the chemotaxis model (1.2) can show
chaotic dynamics. Hence in certain parameter ranges, the solutions depend sensitively on the
initial conditions and we cannot assume that two solutions converge. Consequently, convergence
of a single solution of the cancer invasion model (1.1) to a specific solution of the chemotaxis
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model (1.2) cannot be expected. However, we obtain convergence in a more global sense, which we
describe through the corresponding solution operators. We can apply the variation-of-constants
formula in order to represent the solution of the chemotaxis model (1.2) by using two nonlinear
operators Φ1 and Φ2 according to

U(x, t) = eD1(t−t0)∆U(x, t0)−
∫ t

t0

eD1(t−s)∆
{

χ
(

UVx

)

x
− rU + µU2

}

(·, s)ds

=: Φ1(x, t;U, V, t0)

and

V (x, t) = eD2(t−t0)∆V (x, t0) +

∫ t

t0

eD2(t−s)∆{bU − aV }(·, s)ds

=: Φ2(x, t;U, V, t0)

for arbitrary t0 ≥ 0 and all (x, t) ∈ Ω× (t0,∞). Using this notation, we can write our convergence
result as follows.

Corollary 1.3 Let λ ≥ 0 and u0 6≡ 0, and suppose that (1.3) holds. Then there exist C > 0 and
θ > 0 such that

sup
t>t0

∥

∥

∥

∥

u(·, t)− Φ1(·, t;u, v, t0)
∥

∥

∥

∥

L∞(Ω)

≤ Ce−θt0 and (1.4)

sup
t>t0

∥

∥

∥

∥

v(·, t)− Φ2(·, t;u, v, t0)
∥

∥

∥

∥

L∞(Ω)

= 0 (1.5)

for all t0 > 0.

Let us also remark that the appearance of the smallness condition (1.3) is not of a purely technical
nature. Indeed, a simple counterexample shows that it cannot be relaxed (see Proposition 5.1).
However, convergence can be observed numerically, even in cases where condition (1.3) is not true.
In fact, as a by-product of our analysis we can identify a dichotomy. Namely, either the cancer
invasion model converges to the chemotaxis model, or the total mass of cells vanishes in the large
time limit:

Theorem 1.4 Let λ ≥ 0 and let (u, v, w) denote the solution of (1.1). Assume that (u, v, w) does
not converge to a solution of the chemotaxis model in the sense of Corollary 1.3. Then

lim inf
t→∞

‖u(·, t)‖L1(Ω) = 0.

This result shows that all non-trivial dynamics are covered by the chemotaxis model. It is an open
challenge, however, to clarify whether or not in this case we also have lim supt→∞ ‖u(·, t)‖L1(Ω) = 0.

2 Preliminaries

Let us first recall that by means of standard arguments involving the contraction mapping principle,
one can show that (1.1) possesses a uniquely determined global-in-time classical solution (u, v, w)
(cf. [13, 14, 15]). Moreover, thanks to the parabolic comparison principle we know that u and v
inherit nonnegativity from their respective initial data, whereas the inequality w ≥ 0 immediately
results upon an explicit integration of the third equation in (1.1).
We recall now a well-known property of systems of type (1.1) with a logistic source exhibiting a
quadratic decay with respect to u in the first equation.
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Lemma 2.1 There exists C > 0 such that
∫

Ω

u(x, t)dx ≤ C for all t ≥ 0 (2.1)

and
∫ t+1

t

∫

Ω

u2(x, s)dxds ≤ C for all t ≥ 0. (2.2)

Proof. On integration of the first equation in (1.1) we obtain

d

dt

∫

Ω

u = r

∫

Ω

u− µ

∫

Ω

u2 − λ

∫

Ω

uw

≤ r

∫

Ω

u− µ

∫

Ω

u2 for all t > 0, (2.3)

because u and w are nonnegative. Since
∫

Ω
u2 ≥ 1

|Ω|

(

∫

Ω
u
)2

by Hölder’s inequality, we see that

d

dt

∫

Ω

u ≤
(

r − µ

|Ω|

∫

Ω

u
)

·
∫

Ω

u for all t > 0,

and thus obtain from an ODE comparison argument that
∫

Ω

u ≤ max
{

∫

Ω

u0,
r|Ω|
µ

}

for all t ≥ 0. (2.4)

Now integrating (2.3) in time yields

∫

Ω

u(x, t+ 1)dx+ µ

∫ t+1

t

∫

Ω

u2 ≤
∫

Ω

u(x, t)dx+ r

∫ t+1

t

∫

Ω

u for all t ≥ 0,

which in conjunction with (2.4) proves (2.1) and (2.2). �

Secondly, standard smoothing estimates provide the following regularity property of v.

Lemma 2.2 For all q ∈ [2,∞) there exists C > 0 such that

‖vx(·, t)‖Lq(Ω) ≤ C ·
{

e−at +

∫ t

0

[1 + (t− s)−α] · e−a(t−s) · ‖u(·, s)‖L1(Ω)ds
}

for all t > 0, (2.5)

where α := 1− 1
2q ∈ (0, 1).

Proof. Applying the variation-of-constants formula to the second equation in (1.1) and recalling
standard smoothing estimates for the Neumann heat semigroup (eτ∆)τ≥0 (see [19, Lemma 1.3],
for instance), we see that

‖vx(·, t)‖Lq(Ω) =
∥

∥

∥e−at(eD2t∆v0)x + b

∫ t

0

e−a(t−s)
(

eD2(t−s)∆u(·, s)ds
)

x

∥

∥

∥

Lq(Ω)

≤ c1e
−at‖v0x‖Lq(Ω) + c2

∫ t

0

e−a(t−s)
(

1 + (t− s)−
1
2−

1
2 (1−

1
q
)
)

‖u(·, s)‖L1(Ω)ds

for all t ≥ 0 and some c1 > 0 and c2 > 0, which implies (2.5). �

Combined with Lemma 2.1, this provides a bound for v in L∞((0,∞);W 1,q(Ω)) for arbitrarily
large q.
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Corollary 2.3 For all q ∈ [2,∞) we can find C > 0 fulfilling

‖v(·, t)‖W 1,q(Ω) ≤ C for all t > 0. (2.6)

Proof. According to Lemma 2.1 there exists c1 > 0 such that

‖u(·, t)‖L1(Ω) ≤ c1 for all t > 0. (2.7)

Inserted into (2.5), this shows that given q ∈ [2,∞), with α = 1− 1
2q and some c2 > 0 we have

‖vx(·, t)‖Lq(Ω) ≤ c2 ·
{

e−at +

∫ t

0

[1 + (t− s)−α] · e−a(t−s) · c1ds
}

≤ c2 ·
{

1 + c1

∫ ∞

0

(1 + σ−α) · e−aσdσ
}

for all t > 0. (2.8)

Moreover, integrating the second equation in (1.1) in space we see that (2.7) implies boundedness
of v in L∞((0,∞);L1(Ω)), which in conjunction with (2.8) proves (2.6). �

3 Boundedness

3.1 Pointwise lower bound for v

In order to derive estimates for w, in view of the third equation in (1.1) it seems favourable to
study lower bounds for v. As a preparation, we state a pointwise estimate from below for Neumann
heat semigroup (eσ∆)σ≥0 in Ω.

Lemma 3.1 Let D > 0. Then there exists Γ0 > 0 such that for all nonnegative z ∈ C0(Ω̄) we
have

(

eDτ∆z
)

(x) ≥ Γ0 ·
∫

Ω

z for all x ∈ Ω and each τ ≥ 1. (3.1)

Proof. Since for τ ≥ 1 we have eDτ∆z = eD(τ−1)∆(eD∆z) and since eD(τ−1)∆ is order preserving
because of the maximum principle, we may assume that τ = 1.
Let us first prove (3.1) for all

z ∈ S :=
{

ϕ ∈ C∞
0 (R)

∣

∣

∣ ϕ ≥ 0, suppϕ ⊂ Ω̄, and there exists x0 ∈ Ω such that

ϕ(x0 + y) = ϕ(x0 − y) and ϕx(x0 + y) ≤ 0 for all y > 0
}

.

For such z, namely, we know that

eDt∆z ≥ eDt∆Cz in Ω for all t ≥ 0, (3.2)

where u := eDt∆Cz denotes the solution of the Cauchy problem

{

ut = Duxx, x ∈ R, t > 0,

u(x, 0) = z(x), x ∈ R.

Indeed, since u is nonnegative and symmetric with respect to some x0 ∈ Ω and satisfies ux ≤ 0

in (x0,∞) × (0,∞) by the maximum principle, it follows that ∂u

∂ν
≤ 0 on ∂Ω× (0,∞), and hence

again by the maximum principle we see that u ≤ u := eDt∆z in Ω × (0,∞), because u solves the
same PDE as u but satisfies ∂u

∂ν
= 0 on ∂Ω× (0,∞).
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Now given z ∈ S, using the explicit representation formula for eD∆Cz along with the fact that
supp z ⊂ Ω, we can estimate

(

eD∆Cz
)

(x) =
1√
4πD

∫ b

a

e−
(x−y)2

4D · z(y)dy

≥ 1√
4πD

· e−
(b−a)2

4D ·
∫ b

a

z(y)dy for all x ∈ Ω.

In view of (3.2), this proves that for some Γ0 > 0 we have

(

eD∆z
)

(x) ≥ Γ0 ·
∫

Ω

z for all x ∈ Ω whenever z ∈ S.

However, if z ∈ C0(Ω̄) is an arbitrary nontrivial nonnegative function then for all ε > 0, by a
density argument we can pick N ∈ N, c1, ..., cN > 0 and ϕ1, ..., ϕN ∈ S such that

z + ε ≥
N
∑

k=1

ckϕk ≥ z − ε in Ω.

Thus, by linearity,

eD∆z ≥
N
∑

k=1

ck · eD∆ϕk − ε ≥ Γ0 ·
N
∑

k=1

ck ·
∫

Ω

ϕk − ε ≥ Γ0 ·
∫

Ω

z − Γ0ε|Ω| − ε in Ω,

which in the limit ε ց 0 yields the desired inequality. �

With the above statement at hand, we can derive a lower bound for v that will be convenient for
our purpose.

Lemma 3.2 There exists Γ > 0 such that
∫ t

0

v(x, s)ds ≥ Γ ·
∫ t−2

0

∫

Ω

u(y, s)dyds for all x ∈ Ω and t ≥ 2. (3.3)

Proof. By means of the variation-of-constants formula, v is represented according to

v(·, t) = e−ateD2t∆v0 + b

∫ t

0

e−a(t−s)eD2(t−s)∆u(·, s)ds for t ≥ 0,

where clearly e−ateD2t∆v0 ≥ 0 in Ω, for v0 ≥ 0. By Lemma 3.1, for some Γ0 > 0 we have

eD2(t−s)∆u(·, s) ≥ Γ0 ·
∫

Ω

u(·, s) in Ω whenever t− s ≥ 1,

so that for t ≥ 1 we obtain

v(·, t) ≥ b

∫ t−1

0

e−a(t−s)eD2(t−s)∆u(·, s)ds

≥ bΓ0 ·
∫ t−1

0

e−a(t−s) ·
∫

Ω

u(·, s)ds.

Hence an integration in time shows that

∫ t

1

v(x, s)ds ≥ bΓ0 ·
∫ t

1

∫ s−1

0

e−a(s−σ) ·
∫

Ω

u(·, σ)dσds for all x ∈ Ω and t ≥ 1. (3.4)
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Here, Fubini’s theorem yields

bΓ0 ·
∫ t

1

∫ s−1

0

e−a(s−σ) ·
∫

Ω

u(·, σ)dσds = bΓ0 ·
∫ t−1

0

(

∫ t

σ+1

e−a(s−σ)ds
)

·
∫

Ω

u(·, σ)dσ

=
bΓ0

a
·
∫ t−1

0

(

e−a − e−a(t−σ)
)

·
∫

Ω

u(·, σ)dσ (3.5)

for all t ≥ 1. Now if t− σ ≥ 2 then e−a − e−a(t−σ) ≥ e−a − e−2a, so that in the case t ≥ 2 we can
estimate

bΓ0

a
·
∫ t−1

0

(

e−a − e−a(t−σ)
)

·
∫

Ω

u(·, σ)dσ ≥ bΓ0

a
· (e−a − e−2a) ·

∫ t−2

0

∫

Ω

u(x, σ)dxdσ. (3.6)

Thus, from (3.4)-(3.6) we infer that (3.3) holds if we let Γ := bΓ0

a
· (e−a − e−2a). �

At the cost of a subtractive constant, the upper limit in the time integral on the right of (3.3) can
easily be modified conveniently.

Corollary 3.3 With Γ as in Lemma 3.2, we can choose C > 0 such that

∫ t

0

v(x, s)ds ≥ Γ ·
∫ t

0

∫

Ω

u(y, s)dyds− C for all x ∈ Ω and t ≥ 0.

Proof. Since
∫

Ω u(·, t) ≤ c1 for all t ≥ 0 and some c1 > 0, when t ≥ 2 using Lemma 3.2 we
obtain

Γ

∫ t

0

∫

Ω

u ≤
∫ t

0

v(x, s)ds + Γ

∫ t

t−2

∫

Ω

u ≤
∫ t

0

v(x, s)ds+ 2c1Γ for all x ∈ Ω,

whereas in the case t < 2 we trivially have
∫ t

0
v(x, s)ds ≥ 0 for all x ∈ Ω and hence

Γ

∫ t

0

∫

Ω

u ≤ c1Γt ≤
∫ t

0

v(x, s)ds + 2c1Γ for all x ∈ Ω.

This proves the claim upon the choice C := 2c1Γ. �

3.2 An estimate for w

A crucial step towards our boundedness proof will be provided by the following lemma.

Lemma 3.4 Let q ∈ [2,∞). Then there exists C > 0 such that

‖w(·, t)‖W 1,q(Ω) ≤ C e−ρΓ·
∫

t
0

∫
Ω
u ·

(

1 +

∫ t

0

∫

Ω

u
)

for all t ≥ 0, (3.7)

where Γ is as in Corollary 3.3.

Proof. Integrating wt = −ρvw gives

w(x, t) = w0(x) · e−ρ
∫

t

0
v(x,s)ds for x ∈ Ω and t > 0, (3.8)

so that since Corollary 3.3 implies

e−
∫

t
0
v(x,s)ds ≤ c1 e

−Γ
∫

t
0

∫
Ω
u(y,s)dyds for all x ∈ Ω and t ≥ 0 (3.9)

10



with some c1 > 0, we see that

‖w(·, t)‖L∞(Ω) ≤ c1‖w0‖L∞(Ω) · e−ρΓ
∫

t
0

∫
Ω
u(y,s)dyds for all t ≥ 0. (3.10)

Moreover, differentiating (3.8) yields

wx(x, t) = w0x(x) · e−ρ
∫

t
0
v(x,s)ds − ρw0(x) · e−ρ

∫
t
0
v(x,s)ds ·

∫ t

0

vx(x, s)ds

=: z1(x, t) + z2(x, t) for x ∈ Ω and t ≥ 0. (3.11)

Here, from (3.9) we obtain

|z1(x, t)| ≤ |w0x(x)| · e−ρ
∫

t
0
v(x,s)ds

≤ c1|w0x(x)| · e−ρΓ
∫

t
0

∫
Ω
u(y,s)dyds for all x ∈ Ω and t ≥ 0,

whence
‖z1(·, t)‖Lq(Ω) ≤ c1‖w0x‖Lq(Ω) · e−ρΓ

∫
t
0

∫
Ω
u(y,s)dyds for all t ≥ 0. (3.12)

As to z2, we argue by duality and estimate, writing q′ := q
q−1 and again using (3.9),

‖z2(·, t)‖Lq(Ω) = sup
ϕ∈C∞

0 (Ω), ‖ϕ‖
Lq′ (Ω)

≤1

∣

∣

∣

∫

Ω

z2(x, t)ϕ(x)dx
∣

∣

∣

= sup
ϕ∈C∞

0 (Ω), ‖ϕ‖
Lq′ (Ω)

≤1

∣

∣

∣

∣

ρ

∫

Ω

w0(x) · e−ρ
∫

t
0
v(x,s)ds ·

∫ t

0

vx(x, s)ds · ϕ(x)dx
∣

∣

∣

∣

≤ c1ρ‖w0‖L∞(Ω) · e−ρΓ
∫

t
0

∫
Ω
u(y,s)dyds ·

sup
ϕ∈C∞

0 (Ω), ‖ϕ‖
Lq′ (Ω)

≤1

∫

Ω

∫ t

0

|vx(x, s)| · |ϕ(x)|dsdx

≤ c1ρ‖w0‖L∞(Ω) · e−ρΓ
∫

t
0

∫
Ω
u(y,s)dyds ·

sup
ϕ∈C∞

0 (Ω), ‖ϕ‖
Lq′ (Ω)

≤1

∫ t

0

‖vx(·, s)‖Lq(Ω) · ‖ϕ‖Lq′ (Ω)ds

≤ c1ρ‖w0‖L∞(Ω) · e−ρΓ
∫

t

0

∫
Ω
u(y,s)dyds ·

∫ t

0

‖vx(·, s)‖Lq(Ω)ds (3.13)

for all t ≥ 0. Now from Lemma 2.2 we know that there exists c2 > 0 such that
∫ t

0

‖vx(·, s)‖Lq(Ω)ds ≤ c2

∫ t

0

{

e−as +

∫ s

0

[1 + (s− σ)−α] · e−a(s−σ) · ‖u(·, σ)‖L1(Ω)dσ
}

ds

for all t ≥ 0, where α = 1 − 1
2q . Since

∫ t

0 e
−asds ≤ 1

a
for all t ≥ 0, and since Fubini’s theorem

entails that
∫ t

0

∫ s

0

[1 + (s− σ)−α] · e−a(s−σ) · ‖u(·, σ)‖L1(Ω)dσds

=

∫ t

0

(

∫ t

σ

[1 + (s− σ)−α] · e−a(s−σ)ds
)

· ‖u(·, σ)‖L1(Ω)dσ

=

∫ t

0

(

∫ t−σ

0

[1 + θ−α] · e−aθdθ
)

· ‖u(·, σ)‖L1(Ω)dσ

≤
(

∫ ∞

0

[1 + θ−α] · e−aθdθ
)

·
∫ t

0

‖u(·, σ)‖L1(Ω)dσ for all t ≥ 0,
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we thus infer that
∫ t

0

‖vx(·, s)‖Lq(Ω)ds ≤ c2 ·
{

1

a
+
(

∫ ∞

0

[1 + θ−α] · e−aθdθ
)

·
∫ t

0

∫

Ω

u(x, σ)dxdσ

}

for all t ≥ 0. In conjunction with (3.13), (3.11), (3.12) and (3.10), this finally establishes (3.7). �

As a consequence of Lemma 3.4, without any further assumption we obtain boundedness of w in
L∞((0,∞);W 1,q(Ω)) for any finite q.

Corollary 3.5 Let q ∈ [2,∞). Then there exists c > 0 such that

‖w(·, t)‖W 1,q(Ω) ≤ c for all t ≥ 0.

Proof. In view of the elementary inequality

z · e−ρΓz ≤ 1

ρΓe
for all z ≥ 0,

taking C as provided by Lemma 3.4, from (3.7) we immediately obtain

‖w(·, t)‖W 1,q(Ω) ≤ C ·
(

1 +
1

ρΓe

)

for all t ≥ 0

and conclude. �

3.3 Proof of Theorem 1.1

We can now prove our main result on boundedness in (1.1).

Proof (of Theorem 1.1). In view of Corollary 2.3 and Corollary 3.5 we only need to show that
there exists C > 0 such that

u(x, t) ≤ C for all x ∈ Ω and t > 0. (3.14)

To this end, we first observe that according to Lemma 2.1 there exists c1 > 0 such that for each
integer k ≥ 2 we can pick tk ∈ (k − 2, k − 1) with the property

‖u(·, tk)‖L2(Ω) ≤ c1 for all k ≥ 2. (3.15)

We now let

Mk := max
t∈[tk,tk+3]

(t− tk)
1
4 · ‖u(·, t)‖L∞(Ω), k ≥ 2,

and claim that there exists c2 > 0 satisfying

Mk ≤ c2 for all k ≥ 2. (3.16)

For this purpose, we apply the variation-of-constants formula to the first equation in (1.1) to see
that

u(·, t) = eD1(t−tk)∆u(·, tk)− χ

∫ t

tk

eD1(t−s)∆(uvx)x(·, s)ds− ξ

∫ t

tk

eD1(t−s)∆(uwx)x(·, s)ds

+

∫ t

tk

eD1(t−s)∆f(u(·, s), w(·, s))ds for all t ≥ tk, (3.17)

12



where

f(û, ŵ) := rû − µû2 − λûŵ for û ≥ 0 and ŵ ≥ 0.

Using well-known smoothing estimates for the Neumann heat semigroup, we find c3 > 0 fulfilling

‖eD1(t−tk)∆u(·, tk)‖L∞(Ω) ≤ c3(t− tk)
− 1

4 · ‖u(·, tk)‖L2(Ω)

≤ c1c3(t− tk)
− 1

4 for all t > tk (3.18)

in view of (3.15). Next, since evidently

f(û, ŵ) ≤ r2

4µ
for all û ≥ 0 and ŵ ≥ 0,

the order preserving property of (eτ∆)τ≥0 implies the one-sided pointwise inequality

∫ t

tk

eD1(t−s)∆f(u(·, s)w(·, s))ds ≤ r2

2µ
· (t− tk) in Ω for all t > tk, (3.19)

because eτ∆ leaves constants unchanged.
In order to estimate the second and the third term on the right of (3.17), we pick any p ∈ (1, 2)
and let q := p

p−1 and κ := pq+p−q
q

. We then have

κ = 2− 2

p
∈ (0, 1) (3.20)

and q > p, and in particular Corollary 2.3 and Corollary 3.5 provide positive constants c4 and c5
such that

‖vx(·, t)‖Lq(Ω) ≤ c4 for all t ≥ 0 (3.21)

and
‖wx(·, t)‖Lq(Ω) ≤ c5 for all t ≥ 0. (3.22)

Again according to known smoothing estimates involving a result from [19, Lemma 1.3 iv)], for
some c6 > 0 we have

‖eτ∆ϕx‖L∞(Ω) ≤ c6τ
− 1

2−
1
2p · ‖ϕ‖Lp(Ω) for all τ ∈ (0, 3D1) (3.23)

whenever ϕ ∈ C1(Ω̄). We thereby obtain
∥

∥

∥

∥

− χ

∫ t

tk

eD1(t−s)∆(uvx)x(·, s)ds
∥

∥

∥

∥

L∞(Ω)

≤ c6χ ·D− 1
2−

1
2p

1 ·
∫ t

tk

(t− s)−
1
2−

1
2p ‖u(·, s)vx(·, s)‖Lp(Ω)ds for all t ∈ (tk, tk + 3). (3.24)

Here, in view of the Hölder inequality we have

‖u(·, s)vx(·, s)‖Lp(Ω) ≤ ‖u(·, s)‖
L

pq
q−p (Ω)

· ‖vx(·, s)‖Lq(Ω)

≤ ‖u(·, s)‖κL∞(Ω) · ‖u(·, s)‖1−κ
L1(Ω) · ‖vx(·, s)‖Lq(Ω) for all s ≥ 0,

so that using (3.21) and the boundedness of u in L∞((0,∞);L1(Ω)) asserted by Lemma 2.1, we
see that

‖u(·, s)vx(·, s)‖Lp(Ω) ≤ c7‖u(·, s)‖κL∞(Ω)

≤ c7 · (s− tk)
−κ

4 ·Mκ
k for all s ∈ (tk, tk + 3)
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with some c7 > 0. Inserted into (3.24), this yields c8 > 0 such that

∥

∥

∥

∥

− χ

∫ t

tk

eD1(t−s)∆(uvx)x(·, s)ds
∥

∥

∥

∥

L∞(Ω)

≤ c8M
κ
k ·

∫ t

tk

(t− s)−
1
2−

1
2p · (s− tk)

−κ
4 ds

= c8M
κ
k ·

∫ 1

0

(1− σ)−
1
2−

1
2p · σ−κ

4 dσ

=: c9M
κ
k for all t ∈ (tk, tk + 3), (3.25)

because 1
2 + 1

2p + κ
4 = 1 by (3.20).

Quite a similar reasoning based on (3.22) shows that there exists c10 > 0 such that

∥

∥

∥

∥

− ξ

∫ t

tk

eD1(t−s)∆(uwx)x(·, s)ds
∥

∥

∥

∥

L∞(Ω)

≤ c10M
κ
k for all t ∈ (tk, tk + 3). (3.26)

We now collect (3.18), (3.19), (3.25) and (3.26) to obtain from (3.17) and the nonnegativity of u
that

(t− tk)
1
4 · ‖u(·, t)‖L∞(Ω) ≤ c11 + c12M

κ
k for all t ∈ (tk, tk + 3)

with some c11 > 0 and c12 > 0. Since κ ∈ (0, 1), we can employ Young’s inequality here to derive
from this the existence of c13 > 0 fulfilling

(t− tk)
1
4 · ‖u(·, t)‖L∞(Ω) ≤

1

2
Mk + c13 for all t ∈ (tk, tk + 3).

This entails

Mk ≤ 1

2
Mk + c13

and hence

Mk ≤ 2c13 for all k ≥ 2.

This proves that

‖u(·, t)‖L∞(Ω) ≤ 2c13 for all t ∈ (tk + 1, tk + 3) and each k ≥ 2.

as the fact that tk ∈ (k− 2, k− 1) implies that (tk +1, tk +3) ⊃ [k, k+1] for all k ≥ 2, we conclude
that

‖u(·, t)‖L∞(Ω) ≤ 2c13 for all t ≥ 2.

In view of the evident boundedness of u in Ω× (0, 2), this leads to (3.14) and thus completes the
proof. �

4 Decay of w and asymptotic behaviour

Our next goal is to prove that under the smallness assumption (1.3), w(·, t) decays exponentially
as t → ∞, where in view of our final purpose (cf. Corollary 4.4) it seems favourable to make sure
that this convergence takes place at least in W 1,q(Ω) for some q > 1. In fact, we shall assert a
result of this type in the space W 1,q(Ω) for any q < ∞.
The following preparation for this results from a straightforward combination of Ehrling’s lemma
with the Poincaré inequality, whence its proof may be omitted here.
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Lemma 4.1 Let p ∈ (2,∞). Then for all ε > 0 there exists K(ε) > 0 such that

‖z‖Lp(Ω) ≤ ε‖zx‖2L2(Ω) +K(ε) · ‖z‖2L2(Ω) for all z ∈ W 1,2(Ω).

In view of Lemma 3.4, as our only task towards the desired decay result it remains to ensure that
∫ t

0

∫

Ω u becomes conveniently large for large t. We note that without any proliferation terms in
the first equation in (1.1), that is, under the assumption r = µ = λ = 0, simply integrating this

equation in space would yield
∫

Ω
u(·, t) ≡

∫

Ω
u0, which for nontrivial u0 would imply

∫ t

0

∫

Ω
u → ∞

as t → ∞. However, in the present setting we suspect that the evolution of the total mass might
be more involved, and accordingly it does not seem trivial to exclude the possibility that

∫

Ω u(·, t)
might even decay as t → ∞. However, we can rule out the latter type of behaviour under the
additional assumption that λw ≤ r in Ω. We shall see in Proposition 5.1 below that this cannot
be relaxed.
Our technique to derive this lower bound appears to be new in this context: In order to obtain a
positive lower bound for

∫

Ω u(·, t) for all t > 0, we deduce a differential inequality for the seminorm
of u(·, t) in Lγ(Ω) for some positive γ which is smaller than one. Unlike the case when γ > 1, in a
corresponding testing procedure the term stemming from self-diffusion now has a favourable sign
in respect of preventing decay (cf. (4.6) below).

Lemma 4.2 Suppose that u0 6≡ 0, that λ ≥ 0, and that

λ · ‖w0‖L∞(Ω) ≤ r. (4.1)

Then there exist γ ∈ (0, 1) and c > 0 such that
∫

Ω

uγ(x, t)dx ≥ c for all t ∈ [0,∞).

Proof. Since v > 0 in Ω̄× (0,∞) by the strong maximum principle, upon a small time shift if
necessary we may assume that

η := r − λ · ‖w0‖L∞(Ω) > 0. (4.2)

Let us fix any q ∈ (2,∞) and then apply Corollary 2.3 and Corollary 3.5 to obtain constants c1 > 0
and c2 > 0 such that

‖vx(·, t)‖Lq(Ω) ≤ c1 for all t > 0 (4.3)

and
‖wx(·, t)‖Lq(Ω) ≤ c2 for all t > 0. (4.4)

With K(·) as provided by Lemma 4.1, we now pick γ ∈ (0, 1) sufficiently close to 1 fulfilling

{

χ2c21 ·K
( D2

1

4χ2c21

)

+ ξ2c22 ·K
( D2

1

4ξ2c22

)

}

· 2(1− γ)

D1
<

η

2
. (4.5)

Testing the first equation in (1.1) by uγ−1 we then obtain

1

γ

d

dt

∫

Ω

uγ = D1(1 − γ)

∫

Ω

uγ−2u2
x − χ(1− γ)

∫

Ω

uγ−1uxvx − ξ(1 − γ)

∫

Ω

uγ−1uxwx

+r

∫

Ω

uγ − µ

∫

Ω

uγ+1 − λ

∫

Ω

uγw for all t > 0. (4.6)

Here, Young’s inequality gives

∣

∣

∣− χ(1− γ)

∫

Ω

uγ−1uxvx

∣

∣

∣ ≤ D1(1 − γ)

8
·
∫

Ω

uγ−2u2
x +

2χ2(1 − γ)

D1
·
∫

Ω

uγv2x, (4.7)
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and Hölder’s inequality along with (4.3) yields

2χ2(1− γ)

D1
·
∫

Ω

uγv2x ≤ 2χ2(1− γ)

D1
·
(

∫

Ω

u
qγ
q−2

)
q−2
q ·

(

∫

Ω

|vx|q
)

2
q

≤ 2χ2c21(1 − γ)

D1
·
(

∫

Ω

u
qγ
q−2

)
q−2
q

. (4.8)

We apply Lemma 4.1 to z := u
γ
2 to estimate

(

∫

Ω

u
qγ
q−2

)
q−2
q

= ‖u γ
2 ‖2

L
2q

q−2 (Ω)

≤ D2
1

4χ2c21
‖(u γ

2 )x‖2L2(Ω) +K
( D2

1

4χ2c21

)

· ‖u γ
2 ‖2L2(Ω)

=
D2

1γ
2

16χ2c21
·
∫

Ω

uγ−2u2
x +K

( D2
1

4χ2c21

)

·
∫

Ω

uγ

and thus infer from (4.7) and (4.8) that

∣

∣

∣− χ(1− γ)

∫

Ω

uγ−1uxvx

∣

∣

∣ ≤ D1(1− γ)

8
· (1 + γ2) ·

∫

Ω

uγ−2u2
x

+
2χ2c21(1 − γ)

D1
·K

( D2
1

4χ2c21

)

·
∫

Ω

uγ . (4.9)

By the same arguments relying on (4.4) rather than on (4.3), we see that

∣

∣

∣− ξ(1− γ)

∫

Ω

uγ−1uxwx

∣

∣

∣ ≤ D1(1 − γ)

8
· (1 + γ2) ·

∫

Ω

uγ−2u2
x

+
2ξ2c22(1− γ)

D1
·K

( D2
1

4ξ2c22

)

·
∫

Ω

uγ . (4.10)

Next, in order to estimate the second last term in (4.6) we invoke the Gagliardo-Nirenberg inequal-
ity to find some c3 > 0 such that

µ

∫

Ω

uγ+1 = µ‖u γ
2 ‖

2(γ+1)
γ

L
2(γ+1)

γ (Ω)

≤ c3 ·
(

‖(u γ
2 )x‖

2(γ+1)
γ

·d

L2(Ω) · ‖u γ
2 ‖

2(γ+1)
γ

·(1−d)

L2(Ω) + ‖u γ
2 ‖

2(γ+1)
γ

L2(Ω)

)

,

where

− γ

2(γ + 1)
=

(

1− 1

2

)

d− 1

2
(1− d) = d− 1

2
,

that is,

d =
1

2(γ + 1)
.

Therefore,

µ

∫

Ω

uγ+1 ≤ c3 ·
(

‖(u γ
2 )x‖

1
γ

L2(Ω) · ‖u
γ
2 ‖

2γ+1
γ

L2(Ω) + ‖u γ
2 ‖

2(γ+1)
γ

L2(Ω)

)

,
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so that an application of Young’s inequality yields c4 > 0 such that

µ

∫

Ω

uγ+1 ≤ D1(1 − γ)

2
·
∫

Ω

uγ−2u2
x + c4 · ‖u

γ
2 ‖

2(2γ+1)
2γ−1

L2(Ω) + c3 · ‖u
γ
2 ‖

2(γ+1)
γ

L2(Ω)

=
D1(1 − γ)

2
·
∫

Ω

uγ−2u2
x + c4 ·

(

∫

Ω

uγ
)

2γ+1
2γ−1

+ c3 ·
(

∫

Ω

uγ
)

γ+1
γ

. (4.11)

Finally, using that wt ≤ 0, from (4.2) we gain the inequality

λ

∫

Ω

uγw ≤ λ

∫

Ω

uγw0 ≤ (r − η) ·
∫

Ω

uγ , (4.12)

whence collecting (4.6), (4.9), (4.10), (4.11) and (4.12) we obtain

1

γ

d

dt

∫

Ω

uγ

≥
{

D1(1 − γ)− D1(1− γ)

8
· (1 + γ2)− D1(1− γ)

8
· (1 + γ2)− D1(1− γ)

2

}

·
∫

Ω

uγ−2u2
x

+

{

r − 2χ2c21(1− γ)

D1
·K

( D2
1

4χ2c21

)

− 2ξ2c22(1− γ)

D1
·K

( D2
1

4ξ2c22

)

− (r − η)

}

·
∫

Ω

uγ

−c4 ·
(

∫

Ω

uγ
)

2γ+1
2γ−1 − c3 ·

(

∫

Ω

uγ
)

γ+1
γ

for all t > 0.

In view of (4.5) and the fact that γ < 1, this shows that y(t) :=
∫

Ω
uγ(x, t) satisfies

1

γ
y′(t) ≥ η

2
y(t)− c4y

κ1(t)− c3y
κ2(t) for all t > 0,

where κ1 := 2γ+1
2γ−1 and κ2 := γ+1

γ
. Since both κ1 > 1 and κ2 > 1, an ODE comparison shows that

y(t) ≥ c5 := min
{

y(0), ys
}

for all t > 0,

where ys is the unique positive solution of η
2ys − c4y

κ1
s − c3y

κ2
s = 0. Since c5 is positive in view of

the fact that u0 6≡ 0, the proof is complete. �

On an application of Hölder’s inequality, from Lemma 4.2 we immediately obtain the following.

Corollary 4.3 Let λ ≥ 0, and assume that u0 6≡ 0 and

λ‖w0‖L∞(Ω) ≤ r.

Then there exists c > 0 such that
∫

Ω

u(x, t)dx ≥ c for all t ∈ [0,∞). (4.13)

Proof. According to Lemma 4.2, let us choose γ ∈ (0, 1) and c1 > 0 in such a way that
∫

Ω uγ(x, t)dx ≥ c1 for all t ≥ 0. Since γ < 1, the Hölder inequality then says that
∫

Ω uγ ≤
|Ω|1−γ(

∫

Ω
u)γ , whereupon we infer that (4.13) holds if we let c := c

1
γ

1 |Ω|1−
1
γ , for instance. �
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4.1 Proof of Theorem 1.2

We are now ready to establish our main result on decay of the ECM.

Proof (of Theorem 1.2). Given q ∈ [2,∞), Lemma 3.4 yields c1 > 0 and Γ > 0 such that

‖w(·, t)‖W 1,q(Ω) ≤ c1e
−Γ

∫
t
0

∫
Ω
u ·

(

1 +

∫ t

0

∫

Ω

u
)

for all t ≥ 0,

which implies that that for some c2 > 0 we have

‖w(·, t)‖W 1,q(Ω) ≤ c2e
−Γ

2

∫
t

0

∫
Ω
u for all t ≥ 0, (4.14)

because (1 + z)e−Γz ≤ (1 + 2
Γe ) · e−

Γ
2 z for all z ≥ 0. With c > 0 as given by Corollary 4.3, we

therefore obtain

‖w(·, t)‖W 1,q(Ω) ≤ c2e
−Γ

2 ct for all t ≥ 0,

which proves the assertion. �

4.2 Proof of Corollary 1.3 and Theorem 1.4

The proof of Corollary 1.3 will result directly from the following.

Lemma 4.4 Let λ ≥ 0 and u0 6≡ 0, and suppose that (1.3) holds. Then there exist C > 0 and
θ > 0 such that

sup
t>t0

∥

∥

∥

∥

u(·, t)− eD1(t−t0)∆u0 −
∫ t

t0

eD1(t−s)∆
{

χ(uvx)x(·, s) + ru(·, s)− µu2(·, s)
}

ds

∥

∥

∥

∥

L∞(Ω)

≤ Ce−θt0 for all t0 ≥ 0. (4.15)

Proof. According to Theorem 1.1 and Theorem 1.2, there exist c1 > 0 and θ > 0 such that

‖u(·, t)‖L∞(Ω) ≤ c1 and ‖w(·, t)‖L∞(Ω) + ‖wx(·, t)‖L2(Ω) ≤ c1e
−θt for all t > 0. (4.16)

Now by the variation-of-constants formula applied to the first equation in (1.1), for all t0 ≥ 0 and
each t > t0 we have

u(·, t)− eD1(t−t0)∆u0 −
∫ t

t0

eD1(t−s)∆
{

− χ
(

u(·, s)vx(·, s)
)

x
+ ru(·, s) − µu2(·, s)

}

ds

= −ξ

∫ t

t0

eD1(t−s)∆
(

u(·, s)wx(·, s)
)

x
ds− λ

∫ t

t0

eD1(t−s)∆u(·, s)w(·, s)ds

=: I1(t) + I2(t). (4.17)

Here, the smoothing action of the heat semigroup (cf. (3.23)) along with (4.16) ensures that for
some c2 > 0 the inequality

‖I1(t)‖L∞(Ω) ≤ c2

∫ t

t0

(

1 + (t− s)−
3
4

)

‖u(·, s)wx(·, s)‖L2(Ω)ds

≤ c21c2

∫ t

t0

(

1 + (t− s)−
3
4

)

e−θsds (4.18)
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is valid for all t > t0. Thus, for large t we have

‖I1(t)‖L∞(Ω) ≤ c21c2 ·
{

2

∫ t−1

t0

e−θsds+ 2e−θt0

∫ t

t−1

(t− s)−
3
4 ds

}

≤ c21c2 ·
{

2

θ
e−θt0 + 8e−θt0

}

for all t ≥ t0 + 1, (4.19)

whereas for t close to t0 we can estimate

‖I1(t)‖L∞(Ω) ≤ c21c2e
−θt0 ·

∫ t

t0

(

1 + (t− s)−
3
4

)

ds

= c21c2e
−θt0 ·

(

t− t0 + 4(t− t0)
1
4

)

≤ 5c21c2e
−θt0 for all t ∈ (t0, t0 + 1). (4.20)

Moreover, by the maximum principle and (4.16),

‖I2(t)‖L∞(Ω) ≤ λ

∫ t

t0

‖u(·, s)w(·, s)‖L∞(Ω)ds

≤ λc21

∫ t

t0

e−θsds

≤ λc21
1

θ
e−θt0 for all t > t0. (4.21)

Combining (4.17)-(4.21), we immediately arrive at

sup
t>t0

∥

∥

∥

∥

u(·, t)− eD1(t−t0)∆u0 −
∫ t

t0

eD1(t−s)∆
{

χ(uvx)x(·, s) + ru(·, s)− µu2(·, s)
}

ds

∥

∥

∥

∥

L∞(Ω)

≤ Ce−θt0 for all t0 ≥ 0. (4.22)

�

Proof of Corollary 1.3. The estimate for u is an immediate consequence of Lemma 4.4. The
statement concerning v is evident, since the equations for v in the cancer invasion model (1.1) and
in the chemotaxis model (1.2) are identical, hence they have the same solution operator Φ2. �

Proof of Theorem 1.4. Let us assume that (u, v, w) does not behave as stated in Corollary 1.3
but

lim inf
t→∞

‖u(·, t)‖L1(Ω) > 0. (4.23)

Then the above arguments, starting from (4.14), apply to guarantee that the conclusion of Theorem
1.2 is still valid. We therefore can fully carry over the proof of Lemma 4.4 and hence of Corollary
1.3 to infer that (u, v, w) satisfies (1.4) and (1.5), contrary to the hypothesis. �

5 Linearisation and sharpness of the condition for decay

5.1 Linear analysis

In this section we perform a linear analysis of model (1.1). We will show that assumption (1.3) is
necessary for the tumour to invade, which, of course, is the interesting case.

19



The spatially homogeneous steady states for model (1.1) are

P1(0, 0, 0), P2

(

r

µ
,
br

aµ
, 0

)

, P3(0, 0, w
∗), w∗ > 0,

where P3 denotes a continuum of homogeneous steady states.
We assume that (ū, v̄, w̄) is a given homogeneous steady state, then the linearisation of (1.1) in
(ū, v̄, w̄) is given by

ut = D1uxx − χūvxx − ξūwxx + ru − 2µūu− λūw − λuw̄ (5.1)

vt = D2vxx − av + bu (5.2)

wt = −ρv̄w − ρvw̄. (5.3)

Our spatial domain Ω is an open, bounded interval in R
n. Hence there exist a family of eigenvalues

and eigenfunctions of the Laplacian on Ω equipped with the appropriate boundary conditions.
The eigenvalues are countable and we denote them by −νk, where νk ≥ 0. The corresponding
eigenfunctions are denoted by ϕk(x).
If we linearise in P1 and apply Fourier transform then we obtain the following Jacobians: At
P1(0, 0, 0) we have

J(0, 0, 0) =





−νkD1 + r 0 0
b −νkD2 − a 0
0 0 0





hence the eigenvalues are λ1 = −νkD1 + r, λ2 = 0 and λ3 = −νkD2 − a. If, for example, we study
a domain with homogeneous Neumann boundary conditions (or a periodic domain), then ν1 = 0
is the leading eigenvalue of the Laplacian and the steady state P1 has an unstable eigenvalue
λ1 = r > 0. I.e. a tumour is starting to grow. The eigenvalue λ2 = 0 is an indication of the
continuum of steady states expressed in P3.
If we linearise in P3(0, 0, w

∗) we obtain a Jacobian of

J(0, 0, w∗) =





−νkD1 + r − λw∗ 0 0
b −νkD2 − a 0
0 −ρw∗ 0





and the eigenvalues are λ1 = −νkD1 + r − λw∗, λ2 = 0 and λ3 = −νkD2 − a. For the tumour to
be able to invade the healthy tissue we need λ1 > 0 at least for small k. This gives a necessary
condition for tumour invasion of

r > λw∗.

Without this condition, the tumour would not invade the healthy tissue.

5.2 A counterexample involving large w0

By using flat solutions as counterexamples, we can finally show that the smallness condition (1.3)
in fact cannot be relaxed.

Proposition 5.1 Suppose that λ > 0. Then for all ε > 0 there exist positive smooth functions
u0, v0 and w0 such that

λ‖w0‖L∞(Ω) ≤ r + ε, (5.4)

but such that the corresponding solution (u, v, w) of (1.1) satisfies

w(x, t) >
r

λ
for all x ∈ Ω and t > 0. (5.5)

In particular, u0, v0 and w0 can be chosen to be spatially constant.
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Proof. We fix α ∈ (0, a) such that 2α ≤ ε, and let

w0(x) :=
r + 2α

λ
, x ∈ Ω̄.

It is then possible to choose δ > 0 small enough such that

w0 · e−ρ·(1+ b
a−α

)· δ
α ≥ r + α

λ
in Ω̄, (5.6)

and pick any constant functions u0 and v0 satisfying

0 < u0 < δ and 0 < v0 < δ in Ω̄. (5.7)

We now let (u, v, w) denote the solution of (1.1) emanating from (u0, v0, w0) and note that clearly
(u, v, w) ≡ (u(t), v(t), w(t)) is spatially constant for all times and thus actually satisfies the ODE
system











ut = ru − µu2 − λuw, t > 0,

vt = −av + bu, t > 0,

wt = −ρvw, t > 0.

(5.8)

By (5.7), the number

T := sup
{

T̃ > 0
∣

∣

∣ u(t) ≤ δe−αt for all t ∈ [0, T̃ )
}

≤ ∞

is well-defined and positive. According to (5.7) and the second equation in (5.8), for t ∈ (0, T ) we
have

v(t) = v0e
−at + b

∫ t

0

e−a(t−s)u(s)ds

≤ δe−at + bδ

∫ t

0

e−a(t−s)e−αsds

= δe−at +
bδ

a− α
(e−αt − e−at)

≤ δe−at +
bδ

a− α
e−αt

≤
(

1 +
b

a− α

)

· δe−αt for all t ∈ (0, T ),

because α < a. Now the third equation in (5.8) shows that

w(t) = w0 · e−ρ
∫

t
0
v(s)ds

≥ w0 · e−ρ(1+ b
a−α

)δ·
∫

t
0
e−αs

ds

≥ w0 · e−ρ(1+ b
a−α

)· δ
α for all t ∈ (0, T ),

which in view of (5.6) yields

w(t) ≥ r + α

λ
for all t ∈ (0, T ). (5.9)

Inserted into the first equation in (5.8), this implies that

ut ≤ (r − λw) · u

≤
(

r − λ · r + α

λ

)

· u
= −αu for all t ∈ (0, T )
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and hence entails

u(t) ≤ u0 · e−αt for all t ∈ (0, T ).

Since u0 < δ, this proves that the alternative T < ∞ is impossible, and that according to (5.9),
the inequality w(t) ≥ r+α

λ
is actually valid for all t > 0, which proves the claim. �

6 Numerical investigations

In this section we perform a series of numerical investigations aimed at both validating the the-
oretical results of previous sections as well as exploring further system properties. We begin by
validating the key restriction on the size of the initial matrix density, (1.3) of Theorem 1.2, for
convergence of the cancer invasion model to the chemotaxis growth model. Note that the direct
consequence is that w(x, t) → 0 as t → ∞, with the cell population replacing the matrix and
correlating to tumour expansion.
The numerical scheme adopts a Method of Lines approach in which the equations are first discre-
tised in space on a uniform mesh (of spacing ∆x), and the subsequent system of ODEs are then
integrated in time. Discretisation of the diffusion terms is performed with a central differencing
scheme, while the advective term is discretised using a high-order upwinding scheme with flux-
limiting imposed to maintain positivity (e.g. see [7]). We use the rowmap stiff-systems integrator
[18] to integrate the ODEs. Except where specified, we set error tolerances of 10−8 in rowmap.
Verification of the scheme has been performed through varying ∆x, error tolerances and using an
independent (fully explicit) time-stepping scheme for a representative set of numerics. The quali-
tative behaviour of the system has also been independently confirmed using the matlab internal
PDE solver (pdepe).

6.1 Uniform initial matrix densities

In Figure 2 we plot two simulations for the same cell/chemoattractant initial conditions (u0(x) =

v0(x) = 0.001e−x2

) but different (constant) initial matrix densities. In (a) we set w(x, 0) = 0.975
and, under the parameter set in Figure 1 (b), we have r = λ = 1 and hence ‖w0‖L∞(Ω) <
r
λ
. Consequently, the conditions of Theorem 1.2 are satisfied and we expect convergence with

the chemotaxis model. Simulations clearly indicate this: the cell population grows and expands
throughout the domain, degrading and replacing the matrix. In (b) we now set w(x, 0) = 1.025 and
(1.3) of Theorem 1.2 is not satisfied. While a degree of matrix degradation occurs in the vicinity of
the initial cell mass, the degradation is insufficient to allow the population to grow further. Instead
the cell population collapses to zero and no tumour expansion is observed.
We next provide a more rigorous test of Theorem 1.2 by examining its validity over a wider
spectrum of initial conditions. To this end, we consider the following two sets:

u0(x) = u∗ , v0(x) = u∗(1 + ǫ(x)) , w0(x) = w∗ (IC1)

u0(x) = u∗e−x2

, v0(x) = u∗e−x2

, w0(x) = w∗ (IC2)

where u∗ and w∗ are constants and ǫ(x) denotes a small (1%) spatially random perturbation.
In Figure 3 we plot the results of a numerical sweep across u∗−w∗ parameter space for each set of
initial conditions. At each value of u∗ we iterate w∗ in steps of 0.01 up to w∗ = 5 and determine
whether the solution converges to the logistic growth chemotaxis model (i.e. w(x, t) → 0) or
whether the cell population is wiped out (u(x, t) → 0). We augment this plot with the constant
line indicating r

λ
from the restriction (1.3). We note that the validity of Theorem 1.2 is always
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0 0.0001 1 1.025

(a) (b)

Initial cell mass Initial cell mass

Figure 2: Two numerical simulations illustrating the validity of the inequality (1.3) in Theorem 1.2.
(a) Space – time density maps showing (left) u(x, t) and (right) w(x, t), with density scales above

each frame. Initially w(x, 0) = 0.975, u(x, 0) = 0.001e−x2

. Condition (1.3) is satisfied and the
matrix is degraded everywhere. The behaviour evolves to that of the logistic growth chemotaxis
model (with spatiotemporal patterning for the parameter set under investigation). (b) Space –
time density maps showing (left) u(x, t) and (right) w(x, t) for w(x, 0) = 1.025, u(x, 0) = v(x, 0) =

0.001e−x2

. Here (1.3) is not met. Instead, the cell density evolves to zero and the matrix density
remains above 1. Parameters, numerical code and discretisation details as in Figure 1(b), with
simulations performed on a domain [0, 100].
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Figure 3: Numerical simulations evaluating the validity of Theorem 1.2 under varying initial condi-
tions, see text for details. Each of the lines mark the borders between regions in which the solution
converges to the chemotaxis model (i.e. w(x, t) → 0) or whether the cell population is wiped out
(u(x, t) → 0). Solid line with circles – (IC1); Dashed line with squares – (IC2); Dot-dash line
– Inequality (1.3) in Theorem 1.2. For all initial conditions, the inequality holds true: provided
w∗ ≤ 1(= r/λ) we have w(x, t) → 0. For all simulations, model parameters and numerical details
are as in Figure 1(b), solved for x ∈ [0, 25].

upheld: for initial conditions lying on/below the line w∗ = r
λ

we observe convergence with the
chemotaxis model. We further note, however, that while for small u∗ the bound provides a good
approximation for when tumour growth will take place, for larger u∗ it loses its predictive potential.
In this region the initial cell population is sufficiently large that significant matrix degradation
takes place, resulting in w(x, t) decreasing below r

λ
in some regions of the domain. The cell density

subsequently increases in these regions, fuelling further matrix degradation. The eventual result is
complete matrix degradation and convergence to the logistic growth model. These results echo our
estimates in Lemma 3.4, which shows that a large enough

∫

Ω
u will still lead to matrix degradation,

even if (1.3) is not satisfied. However, it is impossible to derive an exact condition such that
∫

Ω
u

will remain large enough for sufficiently long to lead to full matrix degradation.

6.2 Varying initial matrix densities

While Theorem 1.2 provides an indication on the matrix density for which we expect convergence
to the chemotaxis model, the dependence on infx∈Ωw0(x) is less apparent. We investigate this
here through apposite numerical simulations under varying initial matrix density. Specifically, we
choose w0(x) to be of the form

w0(x) =
w− + w+

2
+

w+ − w−

2
tanh c(x∗ − x) . (6.1)

The above defines a smooth step from w+ to w− centered around x = x∗, where we choose the
centre of the domain x∗ = 50 in our numerical experiments. Clearly, for sufficiently large c,
‖w0‖L∞(Ω) ≃ w+ and infx∈Ωw0(x) ≃ w−. In all simulations we use the parameter set from Figure
1(b) and hence r

λ
= 1

We begin by considering u0(x) and v0(x) as in (IC1) with u∗ = 0.001. In Figure 4 (a) we set
w− = 1.05 and w+ = 1.5 and hence ‖w0‖L∞(Ω) > infx∈Ωw0(x) > 1. Clearly inequality (1.3) is
not met and we can not definitively expect convergence. Simulations here reveal decay of the cell
population to zero with the matrix density remaining above 1 for all x. In Figure 4 (b) we now
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set w− = 0.95 and w+ = 1.5, i.e. ‖w0‖L∞(Ω) > 1 > infx∈Ωw0(x). While (1.3) is still not satisfied,
in the region of low matrix density the cell population grows, fuelling further matrix degradation.
The cells simultaneously move into and degrade the region of higher matrix density, eventually
resulting in w → 0 and convergence to the chemotaxis model.
We examine similar simulations for an initially concentrated cell mass in the region of higher matrix
density, taking u0(x) and v0(x) from (IC2) with u∗ = 0.1. For Figure 4 (c) we set w− = 1.01 and
w+ = 1.2. As in Figure 4 (a), the cell density drops to zero and the matrix density is not sufficiently
degraded to allow tumour expansion to occur. For Figure 4 (d) we set w− = 0.6 and w+ = 1.2.
While matrix is not sufficiently degraded in the region of higher matrix density, here the cell
dispersal terms allow transport of a small fraction into the lower matrix density region. In this
region, w < 1 and the cell population begins to grow and degrade the matrix. Eventually we
observe tumour expansion and convergence to the logistic growth chemotaxis model.
In summary, these and further simulations (data not shown) suggest that (1.3) is only a sufficient
condition for convergence. While it provides a valid restriction on the initial matrix density for
tumour expansion and convergence to the chemotaxis model there are also numerous cases where
(1.3) is not true and we still get convergence. In particular, the simulations indicate that for
situations in which λ infx∈Ωw0(x) < r/λ, but λ‖w0‖L∞(Ω) > r we also observe convergence.
Furthermore, as indicated in Figure 3 it is even possible to observe convergence for infx∈Ω λw0(x) >
r, provided the initial cell population is sufficiently large.

6.3 Sensitivity to initial data

A key observation in [12] was a sensitivity dependence to initial conditions for certain classes of
irregular spatio-temporal patterns, a finding suggested to indicate spatio-temporal chaos in the
chemotaxis model. We demonstrate the extension of this property to the tumour invasion model
in Figure 5. In (a) simulations are initiated according to (IC2) under u∗ = 0.01 and w∗ = 1;
as expected from the above findings, we observe degradation of the matrix and convergence to
spatio-temporal patterning. In (b) we apply a small (0.1%) random spatial perturbation to the
initial condition for u0(x). In the initial tumor invasion phase, the behaviour is almost identical.
However, following convergence to spatio-temporal irregularity we eventually observe divergence
of the solutions, illustrated in the difference of the solutions in (c).

6.4 Incorporating matrix regeneration

In the model studied here only matrix degradation was considered, however in many instances the
matrix may undergo repair as a part of the normal physiological response to damage. The models
of Chaplain and coworkers have accounted for matrix repair through additional terms incorporated
into the Equation for w in (1.1). Permitting matrix repair significantly complicates the derivation
of conditions for which matrix degrades to zero. We investigate this case numerically, modifying
the equation for w in (1.1) to

wt = µ2w(1 − w) − ρvw ,

as considered in [3, 4]. In these illustrative simulations we increasing values of µ2, corresponding to
an increasingly rapid matrix repair response. In Figure 6 we compare results from simulations for
the above kinetics. For µ2 close to zero similar behaviour is observed to system (1.1), although for
all values µ2 > 0 investigated it is noted that the matrix does not (over the timescale of numerics)
completely degrade to zero and the rate of tumour invasion is delayed. For larger values of µ2 the
matrix repair exerts an increasingly strong impact on the dynamics, and eventual loss of pattern
formation.
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(a)

(c) (d)

(b)

0 0.001

0.010

Initial cell mass Initial cell mass

Figure 4: Numerical simulations under varying initial matrix density. In each of (a)-(d) we plot
the space – time density map of (left) u(x, t) and (right) w(x, t), with density scales above each
frame. Initial matrix density as given in (6.1) with c = 1, x∗ = 50 and (a) w+ = 1.5, w− = 1.05;
(b) w+ = 1.5, w− = 0.95; (c) w+ = 1.2, w− = 1.01; (d) w+ = 1.2, w− = 0.6. Initially cells are
either distributed uniformly, as in (a-b), or are concentrated at the x = 0 boundary (c-d), see
text for details. For all simulations, model parameters and numerical details are as in Figure 1(b),
solved for x ∈ [0, 100].

26



(b)(a) (c)

Figure 5: Simulations demonstrating sensitivity dependency to initial conditions, see text for
details. For all simulations, model parameters and numerical details are as in Figure 1(b), solved
for x ∈ [0, 100].
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(b)(a) (c) (d)

Figure 6: Numerical simulations of the cancer invasion model (1.1) under inclusion of matrix
regeneration. Specifically, the equation for w is augmented on the right hand side with an additional
term µ2w (1− w). Each frame plots the space-time density map for (top rows) cell density u and
(bottom rows) matrix density w. The parameter values are as in Figure 1 (b) with, for the
additional terms, (a) µ2 = 0; (b) µ2 = 0.1; (c) µ2 = 0.2; and (d) µ2 = 1.0. Initial conditions and
all other numerical details as for simulations of the cancer invasion model in Figure 1 (b).
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7 Conclusions

The models of Chaplain et al. [3, 4, 2] have been designed to model the degradation and infiltration
of a healthy ECM dominated tissue by an invasive cancerous population through haptotactic and
chemotactic guided migration. The original model [3] was developed according to the principle
interactions involved in the urokinase plasminogen system and consists of five coupled nonlinear
partial differential equations, while the model analysed in the present paper was based on a reduced
system of 3 partial differential equations studied in [4]. The models clearly show tumour invasion
into healthy tissue, followed in certain regions of parameter space by complicated spatio-temporal
patterning. The principal aim of the current paper is to determine the origin of these complicated
dynamics. Noting the similarity in behaviour between the tumour invasion model and a simpler
chemotaxis model, shown in [12] to exhibit spatio-temporal chaos, we derived conditions under
which the two models converge. Thus, at least for low levels of ECM regeneration, we conclude
that the organising centre for these spatial patterns is a chemotaxis model with logistic reproduction
terms. While we should note that the aim of the present paper has been focused towards a deeper
analytical understanding of a model, rather than application dominated, it is worth highlighting
that these spatial patterns qualitatively replicate the complicated morphologies of certain forms of
invasive tumour. Identifying such spatio-temporal dynamics of tumour morphology in vitro and
in vivo would be extremely interesting.
It is worth stressing that a merely superficial examination of the third equation of (1.1)

wt = −ρwv

immediately suggests that w collapses to zero and results in the chemotaxis system, suggesting
that the results here could be construed as somewhat obvious in nature. However, the key point
is that such blind intuition can be misleading and that there are clear cases, identified numerically
and analytically, where convergence does not occur. In fact we have only identified a sufficient
condition (1.3) under which convergence occurs and our numerical simulations reveal clearly that
this condition is not optimal. If (1.3) is not satisfied, then solutions might or might not converge.
Lemma 3.4 gives an indication that for large enough

∫

Ω
u convergence can be expected. The

simulations also show a dichotomy; in all cases studied, we either obtain convergence towards
the chemotaxis model, or convergence of u to zero. In Theorem 1.4 we could at least show that
lim inft→∞ ‖u(·, t)‖L1(Ω) is zero, if there is no convergence.
To obtain our results, we needed to make certain assumptions. Our estimates are strictly one-
dimensional, and a corresponding result in higher dimensions would be desirable. Secondly, and
crucially from a biological perspective, we have had to remove the self-renewal term for the ECM.
Simulations suggest that with ECM remodelling, we still observe the same dynamics provided the
repair rate is not too strong and a detailed analysis of this case is left for future work. We also
note that the present paper highlights the nontrivial task of scratching deeper under the surface
of models being developed to describe complicated dynamics. As biological models become more
involved, incorporating more components and characteristics of in vivo tissues, it will become
increasingly important to find the scenarios under which their behaviour can be understood in
terms of simpler and more established systems.
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