This research deals with the seismic reliability of non-linear base-isolated structures equipped with Lateral Impact Resilient Double Concave Friction Pendulum (LIR-DCFP) devices. Specifically, exceeding probabilities within the reference lifetime are assessed with respect to both superstructure ductility and isolator displacement demand. The innovative LIR-DCFP bearing has an improved inner slider with an internal gap and is capable to reduce adverse effects of the lateral impact between the inner slider and the restraining rims. The dynamic behavior of the superstructure is represented by a simplified one-degree-of-freedom model describing its lateral response. The isolation system is characterized by a model based on rigid body dynamics also including the lateral impact behavior. A wide parametric analysis is developed for several system properties considering the friction coefficients as relevant random variables. Different sets of natural seismic records able to match conditional spectra for a site in Riverside (California) were selected to consider the aleatory uncertainties of the seismic input. Incremental dynamic analyses were performed to determine the statistics of significant engineering demand parameters and compute probabilities exceeding specific limit states to define fragility curves. Finally, employing seismic hazard curves, the seismic reliability of isolated structures was evaluated. For increasing values of the internal gap, structures equipped with LIR-DCFP devices exhibit better seismic performance with respect to classical DCFP bearings with same size, especially, if the superstructure is designed to behave essentially elastic when the lateral capacity of the isolation level is not reached, or the hardening post-yield stiffness of the superstructure is relatively high. Reductions up to 20% in the exceeding probabilities within 50 years related to the ductility demand are achievable using the suggested LIR-DCFP isolator.

Seismic reliability of structures equipped with LIR-DCFP bearings in terms of superstructure ductility and isolator displacement / Auad, G; Castaldo, P; Almazan, Jl. - In: EARTHQUAKE ENGINEERING & STRUCTURAL DYNAMICS. - ISSN 0098-8847. - ELETTRONICO. - 51:13(2022), pp. 3171-3214. [10.1002/eqe.3719]

Seismic reliability of structures equipped with LIR-DCFP bearings in terms of superstructure ductility and isolator displacement

Castaldo, P;
2022

Abstract

This research deals with the seismic reliability of non-linear base-isolated structures equipped with Lateral Impact Resilient Double Concave Friction Pendulum (LIR-DCFP) devices. Specifically, exceeding probabilities within the reference lifetime are assessed with respect to both superstructure ductility and isolator displacement demand. The innovative LIR-DCFP bearing has an improved inner slider with an internal gap and is capable to reduce adverse effects of the lateral impact between the inner slider and the restraining rims. The dynamic behavior of the superstructure is represented by a simplified one-degree-of-freedom model describing its lateral response. The isolation system is characterized by a model based on rigid body dynamics also including the lateral impact behavior. A wide parametric analysis is developed for several system properties considering the friction coefficients as relevant random variables. Different sets of natural seismic records able to match conditional spectra for a site in Riverside (California) were selected to consider the aleatory uncertainties of the seismic input. Incremental dynamic analyses were performed to determine the statistics of significant engineering demand parameters and compute probabilities exceeding specific limit states to define fragility curves. Finally, employing seismic hazard curves, the seismic reliability of isolated structures was evaluated. For increasing values of the internal gap, structures equipped with LIR-DCFP devices exhibit better seismic performance with respect to classical DCFP bearings with same size, especially, if the superstructure is designed to behave essentially elastic when the lateral capacity of the isolation level is not reached, or the hardening post-yield stiffness of the superstructure is relatively high. Reductions up to 20% in the exceeding probabilities within 50 years related to the ductility demand are achievable using the suggested LIR-DCFP isolator.
File in questo prodotto:
File Dimensione Formato  
Manuscript_accepted.pdf

Open Access dal 11/08/2023

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 2.49 MB
Formato Adobe PDF
2.49 MB Adobe PDF Visualizza/Apri
17477426.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 7.14 MB
Formato Adobe PDF
7.14 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2974120