We exhibit families of nontrivial (i.e., not Kähler–Einstein) radial Kähler– Ricci solitons (KRS), both complete and not complete, which can be Kähler immersed into infinite-dimensional complex space forms. This shows that the triviality of a KRS induced by a finite-dimensional complex space form proved by Loi and Mossa (Proc. Amer. Math. Soc. 149:11 (2020), 4931–4941) does not hold when the ambient space is allowed to be infinite-dimensional. Moreover, we show that the radial potential of a radial KRS induced by a nonelliptic complex space form is necessarily defined at the origin.
Kahler–Ricci Solitons Induced by Infinite-Dimensional Complex Space Forms / Loi, A.; Salis, F.; Zuddas, F.. - In: PACIFIC JOURNAL OF MATHEMATICS. - ISSN 0030-8730. - 316:1(2022), pp. 183-205. [10.2140/pjm.2022.316.183]
Kahler–Ricci Solitons Induced by Infinite-Dimensional Complex Space Forms
Salis F.;
2022
Abstract
We exhibit families of nontrivial (i.e., not Kähler–Einstein) radial Kähler– Ricci solitons (KRS), both complete and not complete, which can be Kähler immersed into infinite-dimensional complex space forms. This shows that the triviality of a KRS induced by a finite-dimensional complex space form proved by Loi and Mossa (Proc. Amer. Math. Soc. 149:11 (2020), 4931–4941) does not hold when the ambient space is allowed to be infinite-dimensional. Moreover, we show that the radial potential of a radial KRS induced by a nonelliptic complex space form is necessarily defined at the origin.File | Dimensione | Formato | |
---|---|---|---|
loi SALIS zuddas PacificJMath.pdf
accesso riservato
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
382.39 kB
Formato
Adobe PDF
|
382.39 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
KRS.pdf
accesso aperto
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
Pubblico - Tutti i diritti riservati
Dimensione
299.63 kB
Formato
Adobe PDF
|
299.63 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2974077