Long-term stability and accurate time synchronization are at the core of timing network facilities in several critical infrastructures, such as in telecommunication networks. In these applications, timing signals disciplined by Global Navigation Satellite Systems (GNSS) receivers, i.e., One Pulse-per-Second (1-PPS), complement Primary Reference Time Clocks (PRTCs) by compensating for long-term drifts of their embedded atomic clocks. However, GNSS receivers may expose timing distribution networks to Radio Frequency (RF) vulnerabilities being the cause of possible degraded or disrupted synchronization among the nodes. This paper presents a test methodology assessing the resilience of new GNSS timing receivers to different classes of intentional RF interferences. The analysis of the results compares the effects of practicable spoofing and meaconing attacks on the 1-PPS generated by three Commercial off-the-shelf (COTS) GNSS timing receivers, currently employed in timing applications. On one hand, the results emphasised the robustness of State-of-the-Art (SoA) mitigation technologies compared to previous generations’ devices. On the other hand, the vulnerability of SoA receivers to meaconing attacks highlights the limits of such mitigation solutions that may turn to severe effects on telecommunication networks’ performance.
Investigation on the Actual Robustness of GNSS-based Timing Distribution Under Meaconing and Spoofing Interferences / Minetto, Alex; Polidori, Brendan D.; Pini, Marco; Dovis, Fabio. - ELETTRONICO. - (2022), pp. 3848-3862. (Intervento presentato al convegno 35th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2022) tenutosi a Denver, Colorado (USA) nel September 19 - 23, 2022) [10.33012/2022.18569].
Investigation on the Actual Robustness of GNSS-based Timing Distribution Under Meaconing and Spoofing Interferences
Alex Minetto;Brendan D. Polidori;Marco Pini;Fabio Dovis
2022
Abstract
Long-term stability and accurate time synchronization are at the core of timing network facilities in several critical infrastructures, such as in telecommunication networks. In these applications, timing signals disciplined by Global Navigation Satellite Systems (GNSS) receivers, i.e., One Pulse-per-Second (1-PPS), complement Primary Reference Time Clocks (PRTCs) by compensating for long-term drifts of their embedded atomic clocks. However, GNSS receivers may expose timing distribution networks to Radio Frequency (RF) vulnerabilities being the cause of possible degraded or disrupted synchronization among the nodes. This paper presents a test methodology assessing the resilience of new GNSS timing receivers to different classes of intentional RF interferences. The analysis of the results compares the effects of practicable spoofing and meaconing attacks on the 1-PPS generated by three Commercial off-the-shelf (COTS) GNSS timing receivers, currently employed in timing applications. On one hand, the results emphasised the robustness of State-of-the-Art (SoA) mitigation technologies compared to previous generations’ devices. On the other hand, the vulnerability of SoA receivers to meaconing attacks highlights the limits of such mitigation solutions that may turn to severe effects on telecommunication networks’ performance.File | Dimensione | Formato | |
---|---|---|---|
GNSS22-0346.pdf.pdf
accesso riservato
Descrizione: Published manuscript downloaded from the editor's online repository
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
2.35 MB
Formato
Adobe PDF
|
2.35 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
ION_GNSS_2022_Minetto_Polidori_Dovis_Pini_ROOT.pdf
accesso aperto
Descrizione: Accepted manuscript
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
Pubblico - Tutti i diritti riservati
Dimensione
2.18 MB
Formato
Adobe PDF
|
2.18 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2973905