Radiopacity is sometimes an essential characteristic of biomaterials that can help clinicians perform follow-ups during pre- and post-interventional radiological imaging. Due to their chemical composition and structure, most bioceramics are inherently radiopaque but can still be doped/mixed with radiopacifiers to increase their visualization during or after medical procedures. The radiopacifiers are frequently heavy elements of the periodic table, such as Bi, Zr, Sr, Ba, Ta, Zn, Y, etc., or their relevant compounds that can confer enhanced radiopacity. Radiopaque bioceramics are also intriguing additives for biopolymers and hybrids, which are extensively researched and developed nowadays for various biomedical setups. The present work aims to provide an overview of radiopaque bioceramics, specifically crystalline, non-crystalline (glassy), and nanostructured bioceramics designed for applications in orthopedics, dentistry, and cancer therapy. Furthermore, the modification of the chemical, physical, and biological properties of parent ceramics/biopolymers due to the addition of radiopacifiers is critically discussed. We also point out future research lacunas in this exciting field that bioceramists can explore further.
Radiopaque Crystalline, Non-Crystalline and Nanostructured Bioceramics / Montazerian, M.; Goncalves, G. V. S.; Barreto, M. E. V.; Lima, E. P. N.; Cerqueira, G. R. C.; Sousa, J. A.; Malek Khachatourian, A.; Souza, M. K. S.; Silva, S. M. L.; Fook, M. V. L.; Baino, F.. - In: MATERIALS. - ISSN 1996-1944. - ELETTRONICO. - 15:21(2022), p. 7477. [10.3390/ma15217477]
Radiopaque Crystalline, Non-Crystalline and Nanostructured Bioceramics
Baino F.
2022
Abstract
Radiopacity is sometimes an essential characteristic of biomaterials that can help clinicians perform follow-ups during pre- and post-interventional radiological imaging. Due to their chemical composition and structure, most bioceramics are inherently radiopaque but can still be doped/mixed with radiopacifiers to increase their visualization during or after medical procedures. The radiopacifiers are frequently heavy elements of the periodic table, such as Bi, Zr, Sr, Ba, Ta, Zn, Y, etc., or their relevant compounds that can confer enhanced radiopacity. Radiopaque bioceramics are also intriguing additives for biopolymers and hybrids, which are extensively researched and developed nowadays for various biomedical setups. The present work aims to provide an overview of radiopaque bioceramics, specifically crystalline, non-crystalline (glassy), and nanostructured bioceramics designed for applications in orthopedics, dentistry, and cancer therapy. Furthermore, the modification of the chemical, physical, and biological properties of parent ceramics/biopolymers due to the addition of radiopacifiers is critically discussed. We also point out future research lacunas in this exciting field that bioceramists can explore further.File | Dimensione | Formato | |
---|---|---|---|
Review radiopaque bioceramics_Materials 2022.pdf
accesso aperto
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Creative commons
Dimensione
5.24 MB
Formato
Adobe PDF
|
5.24 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2973433