We run various distributed machine learning (DML) architectures in a hybrid optical/electrical DCN and an optical DCN based on Hyper-FleX-LION. Experimental results show that Hyper-FleX-LION gains faster DML acceleration and improves acceleration ratio by up to 22.3%.
Which can Accelerate Distributed Machine Learning Faster: Hybrid Optical/Electrical or Optical Reconfigurable DCN? / Yang, H.; Zhu, Z.; Proietti, R.; Ben Yoo, S. J.. - ELETTRONICO. - (2022). (Intervento presentato al convegno 2022 Optical Fiber Communications Conference and Exhibition, OFC 2022 tenutosi a San Diego, CA, USA nel 06-10 March 2022) [10.1364/OFC.2022.Th1G.5].
Which can Accelerate Distributed Machine Learning Faster: Hybrid Optical/Electrical or Optical Reconfigurable DCN?
Proietti R.;
2022
Abstract
We run various distributed machine learning (DML) architectures in a hybrid optical/electrical DCN and an optical DCN based on Hyper-FleX-LION. Experimental results show that Hyper-FleX-LION gains faster DML acceleration and improves acceleration ratio by up to 22.3%.File | Dimensione | Formato | |
---|---|---|---|
OFC2022_yh_submission[7771].pdf
accesso aperto
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
PUBBLICO - Tutti i diritti riservati
Dimensione
243.46 kB
Formato
Adobe PDF
|
243.46 kB | Adobe PDF | Visualizza/Apri |
Which_can_Accelerate_Distributed_Machine_Learning_Faster_Hybrid_Optical_Electrical_or_Optical_Reconfigurable_DCN.pdf
non disponibili
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
253.52 kB
Formato
Adobe PDF
|
253.52 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2973049