We run various distributed machine learning (DML) architectures in a hybrid optical/electrical DCN and an optical DCN based on Hyper-FleX-LION. Experimental results show that Hyper-FleX-LION gains faster DML acceleration and improves acceleration ratio by up to 22.3%.

Which can Accelerate Distributed Machine Learning Faster: Hybrid Optical/Electrical or Optical Reconfigurable DCN? / Yang, H.; Zhu, Z.; Proietti, R.; Ben Yoo, S. J.. - ELETTRONICO. - (2022). (Intervento presentato al convegno 2022 Optical Fiber Communications Conference and Exhibition, OFC 2022 tenutosi a San Diego, CA, USA nel 06-10 March 2022) [10.1364/OFC.2022.Th1G.5].

Which can Accelerate Distributed Machine Learning Faster: Hybrid Optical/Electrical or Optical Reconfigurable DCN?

Proietti R.;
2022

Abstract

We run various distributed machine learning (DML) architectures in a hybrid optical/electrical DCN and an optical DCN based on Hyper-FleX-LION. Experimental results show that Hyper-FleX-LION gains faster DML acceleration and improves acceleration ratio by up to 22.3%.
2022
978-1-55752-466-9
File in questo prodotto:
File Dimensione Formato  
OFC2022_yh_submission[7771].pdf

accesso aperto

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 243.46 kB
Formato Adobe PDF
243.46 kB Adobe PDF Visualizza/Apri
Which_can_Accelerate_Distributed_Machine_Learning_Faster_Hybrid_Optical_Electrical_or_Optical_Reconfigurable_DCN.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 253.52 kB
Formato Adobe PDF
253.52 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2973049