We propose a Convolutional Neural Network (CNN) to learn the mapping between the 2D power profiles, (distance and frequency), and the Raman pumps. Using the CNN, the pump powers and wavelengths for arbitrary 2D profiles can be determined with high accuracy.
Distance and spectral power profile shaping using machine learning enabled Raman amplifiers / Soltani, M.; Da Ros, F.; Carena, A.; Zibar, D.. - ELETTRONICO. - (2021), pp. 1-2. (Intervento presentato al convegno 2021 IEEE Photonics Society Summer Topicals Meeting Series (SUM) tenutosi a Cabo San Lucas, Mexico nel 19-21 July 2021) [10.1109/SUM48717.2021.9505741].
Distance and spectral power profile shaping using machine learning enabled Raman amplifiers
Carena A.;
2021
Abstract
We propose a Convolutional Neural Network (CNN) to learn the mapping between the 2D power profiles, (distance and frequency), and the Raman pumps. Using the CNN, the pump powers and wavelengths for arbitrary 2D profiles can be determined with high accuracy.File | Dimensione | Formato | |
---|---|---|---|
233_ieee-sum2021.pdf
non disponibili
Descrizione: File pubblicato
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
687.74 kB
Formato
Adobe PDF
|
687.74 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Distance_and_spectral_power_profile_shaping_using_machine_learning_enabled_Raman_amplifiers.pdf
accesso aperto
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
PUBBLICO - Tutti i diritti riservati
Dimensione
660.97 kB
Formato
Adobe PDF
|
660.97 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2972736