We study critical trajectories in the sphere for the 1/2-Bernoulli’s bending functional with length constraint. For every Lagrange multiplier encoding the conservation of the length during the variation, we show the existence of infinitely many closed trajectories which depend on a pair of relatively prime natural numbers. A geometric description of these numbers and the relation with the shape of the corresponding critical trajectories is also given.

Closed 1/2-Elasticae in the 2-Sphere / Musso, Emilio; Pámpano, Álvaro. - In: JOURNAL OF NONLINEAR SCIENCE. - ISSN 0938-8974. - ELETTRONICO. - 33:1(2022), pp. 1-48. [10.1007/s00332-022-09860-3]

Closed 1/2-Elasticae in the 2-Sphere

Musso, Emilio;
2022

Abstract

We study critical trajectories in the sphere for the 1/2-Bernoulli’s bending functional with length constraint. For every Lagrange multiplier encoding the conservation of the length during the variation, we show the existence of infinitely many closed trajectories which depend on a pair of relatively prime natural numbers. A geometric description of these numbers and the relation with the shape of the corresponding critical trajectories is also given.
File in questo prodotto:
File Dimensione Formato  
Final_Alvaro_Emilio.pdf

Open Access dal 19/10/2023

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 3.43 MB
Formato Adobe PDF
3.43 MB Adobe PDF Visualizza/Apri
NonLinearScience22:23.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 2.08 MB
Formato Adobe PDF
2.08 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2972651