We study critical trajectories in the sphere for the 1/2-Bernoulli’s bending functional with length constraint. For every Lagrange multiplier encoding the conservation of the length during the variation, we show the existence of infinitely many closed trajectories which depend on a pair of relatively prime natural numbers. A geometric description of these numbers and the relation with the shape of the corresponding critical trajectories is also given.
Closed 1/2-Elasticae in the 2-Sphere / Musso, Emilio; Pámpano, Álvaro. - In: JOURNAL OF NONLINEAR SCIENCE. - ISSN 0938-8974. - ELETTRONICO. - 33:1(2022), pp. 1-48. [10.1007/s00332-022-09860-3]
Closed 1/2-Elasticae in the 2-Sphere
Musso, Emilio;
2022
Abstract
We study critical trajectories in the sphere for the 1/2-Bernoulli’s bending functional with length constraint. For every Lagrange multiplier encoding the conservation of the length during the variation, we show the existence of infinitely many closed trajectories which depend on a pair of relatively prime natural numbers. A geometric description of these numbers and the relation with the shape of the corresponding critical trajectories is also given.File | Dimensione | Formato | |
---|---|---|---|
Final_Alvaro_Emilio.pdf
Open Access dal 19/10/2023
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
PUBBLICO - Tutti i diritti riservati
Dimensione
3.43 MB
Formato
Adobe PDF
|
3.43 MB | Adobe PDF | Visualizza/Apri |
NonLinearScience22:23.pdf
non disponibili
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
2.08 MB
Formato
Adobe PDF
|
2.08 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2972651