Variations in the extent and duration of snow cover impinge on surface albedo and snowmelt rate, influencing the energy and water budgets. Monitoring snow coverage is therefore crucial for both optimising the supply of snowpack-derived water and understanding how climate change could impact on this source, vital for sustaining human activities and the natural environment during the dry season. Mountainous sites can be characterised by complex morphologies, cloud cover and forests that can introduce errors into the estimates of snow cover obtained from remote sensing. Consequently, there is a need to develop simulation models capable of predicting how snow coverage evolves across a season. Cellular Automata models have previously been used to simulate snowmelt dynamics, but at a coarser scale that limits insight into the precise factors driving snowmelt at different stages. To address this information gap, we formulate a novel, fine-scale stochastic Cellular Automaton model that describes snow coverage across a high-elevation catchment. Exploiting its refinement, the model is used to explore the interplay between three factors proposed to play a critical role: terrain elevation, sun incidence angle, and the extent of nearby snow. We calibrate the model via a randomised parameter search, fitting simulation data against snow cover masks estimated from Sentinel-2 satellite images. Our analysis shows that.
A stochastic cellular automaton model to describe the evolution of the snow-covered area across a high-elevation mountain catchment / Painter, Kevin J.; Gentile, Alessio; Ferraris, Stefano. - In: SCIENCE OF THE TOTAL ENVIRONMENT. - ISSN 0048-9697. - 857:Pt 1(2023), p. 159195. [10.1016/j.scitotenv.2022.159195]
A stochastic cellular automaton model to describe the evolution of the snow-covered area across a high-elevation mountain catchment
Kevin J. Painter;Alessio Gentile;Stefano Ferraris
2023
Abstract
Variations in the extent and duration of snow cover impinge on surface albedo and snowmelt rate, influencing the energy and water budgets. Monitoring snow coverage is therefore crucial for both optimising the supply of snowpack-derived water and understanding how climate change could impact on this source, vital for sustaining human activities and the natural environment during the dry season. Mountainous sites can be characterised by complex morphologies, cloud cover and forests that can introduce errors into the estimates of snow cover obtained from remote sensing. Consequently, there is a need to develop simulation models capable of predicting how snow coverage evolves across a season. Cellular Automata models have previously been used to simulate snowmelt dynamics, but at a coarser scale that limits insight into the precise factors driving snowmelt at different stages. To address this information gap, we formulate a novel, fine-scale stochastic Cellular Automaton model that describes snow coverage across a high-elevation catchment. Exploiting its refinement, the model is used to explore the interplay between three factors proposed to play a critical role: terrain elevation, sun incidence angle, and the extent of nearby snow. We calibrate the model via a randomised parameter search, fitting simulation data against snow cover masks estimated from Sentinel-2 satellite images. Our analysis shows that.File | Dimensione | Formato | |
---|---|---|---|
PainterGentileFerraris2022Preprint.pdf
accesso aperto
Tipologia:
1. Preprint / submitted version [pre- review]
Licenza:
Creative commons
Dimensione
4.33 MB
Formato
Adobe PDF
|
4.33 MB | Adobe PDF | Visualizza/Apri |
painter stocastic cellular.pdf
accesso aperto
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Creative commons
Dimensione
10.77 MB
Formato
Adobe PDF
|
10.77 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2972637