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A stochastic cellular automaton model to describe the evolution of the
snow-covered area across a high-elevation mountain catchment

Kevin J. Painter, Alessio Gentile, Stefano Ferraris

aInteruniversity Department of Regional and Urban Studies and Planning (DIST), Politecnico di Torino, Viale
Pier Andrea Mattioli, Torino, 10125, Piedmont, Italy

Abstract

Variations in the extent and duration of snow cover impinge on surface albedo and snowmelt
rate, influencing the energy and water budgets. Monitoring snow coverage is therefore crucial for
both optimising the supply of snowpack-derived water and understanding how climate change
could impact on this source, vital for sustaining human activities and the natural environment
during the dry season.

Mountainous sites can be characterised by complex morphologies, cloud cover and forests that
can introduce errors into the estimates of snow cover obtained from remote sensing. Conse-
quently, there is a need to develop simulation models capable of predicting how snow cover-
age evolves across a season. Cellular Automata models have previously been used to simulate
snowmelt dynamics, but at a coarser scale that limits insight into the precise factors driving
snowmelt at different stages.

To address this information gap, we formulate a novel, fine-scale stochastic Cellular Automaton
model that describes snow coverage across a high-elevation catchment. Exploiting its refinement,
the model is used to explore the interplay between three factors proposed to play a critical role:
terrain elevation, sun incidence angle, and the extent of nearby snow. We calibrate the model
via a randomised parameter search, fitting simulation data against snow cover masks estimated
from Sentinel-2 satellite images. Our analysis shows that:

- the three simple assumptions are sufficient to yield a close correspondence between model
output and the estimated snow cover masks ;

- across the study area, elevation and neighbouring snow appear to be particularly influen-
tial, with incidence playing a relatively minor role for much of the process ;

- incidence, though, plays a significant role early in the process, and allows the identification
of regions that receive sufficient solar energy to trigger snowmelt ;

- discrepancies between model output and satellite data indicate other potential factors at
play, the identification of which will demand future attention.

Keywords: High-Elevation Catchment, Snow Cover Area, Sentinel-2, Cellular Automaton
Model, Mountain Hydrology
2010 MSC: 86A05
2010 MSC: 86-08

1. Introduction

Water related problems range from scarcity to flooding, calling for a variety of modelling and pre-
dictive approaches that can include rainfall-runoff models (Ditthakit et al. 2021) or the adoption
of machine learning techniques (Singh et al. 2022, Mohammadi et al. 2022). In a high-mountain
environment, the seasonal snowpack constitutes a key resource, providing a delayed and steady
water source that contributes significantly to the hydrological cycle, therefore demanding care-
ful modelling (Jenicek and Ledvinka 2020, Leavesley 1989). In particular, snowmelt recharges
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groundwater storage (Cochand et al. 2019), fundamental for supplies of drinking water, along
with industry and agriculture (Dietz et al. 2012). For countries with an abundance of hy-
dropower, the seasonal snowpack also constitutes a valuable renewable energy stock (Vikhamar
and Solberg 2003). As a consequence, monitoring and simulating annual and seasonal variation
in snow cover is vital to understand both the availability and the sustainable management of
this crucial water source (Butt and Bilal 2011, Pardo-Igúzquiza et al. 2017), hence contributing
to Sustainable Development Goal 6 (SDG6). Further, water management has become increas-
ingly topical in the light of climate change (Collados-Lara et al. 2021), SDG13. High-elevation
environments are particularly sensitive to climate change, and its consequences can be rapidly
perceived. Rising temperatures increase the solar radiation absorbed by the snowpack, thereby
amplifying the initial warming and altering the surface albedo (Thackeray and Fletcher 2016).
This in turn leads to earlier melting (Xiao 2021), in advance of the driest season when the de-
mand for water is acute, particularly so given the increasing frequency of droughts (Faye 2022).
These processes have repercussions for the hydrological cycle (Kundzewicz 2008) and demand
exploration into whether these planetary-scale changes are reversible or not: “Is the hydrologi-
cal cycle regionally accelerating/decelerating under climate and environmental change, and are
there tipping points (irreversible changes)?” was recently posed as one of 23 unsolved problems
identified by the hydrology community (Blöschl et al. 2019).

The main focus of this paper is the Snow-Covered Area (SCA), an important variable for
physically-based models that aim to compute the energy and water balance in snow-dominated
environments (Barry et al. 1990). On the one hand, the SCA controls surface albedo and, conse-
quently, thermal fluxes (Armstrong and Brun 2008). On the other hand, it is a necessary (but,
we note, not sufficient) input for simulating the runoff due to snowmelt (DeWalle and Rango
2008) and how this could change under different climate change scenarios. For example, we refer
to Javadinejad et al. (2020); Kumar et al. (2022) for regionally-specific changes in the snowmelt
runoff, under various projections for altered SCA and/or temperature increase.

Multi-spectral satellite images have long been used in the mapping of snow cover, with SCA
identified through the Normalized Difference Snow Index (NDSI) (Dozier 1989; Hall et al. 1995).
This index exploits the distinct reflectance of snow and clouds from both visible and short-wave
infrared bands (for more details, see section 2.1) and SCA can then be estimated by counting the
pixels classified above a specified NDSI threshold, or via a (previously calibrated) relationship
between the NDSI and the fractional SCA (fSCA, that is the percentage of snow coverage per
pixel), see Salomonson and Appel (2004). This topic has received considerable attention, albeit
with different aims. For example, Liang et al. (2008) have studied the accuracy of the MODIS
algorithm for mapping snow cover under different snow depth and land cover conditions, finding
that both factors perturb the algorithm accuracy. Dedieu et al. (2016) have used SCA to
validate estimates of the first snow-free day, obtained through calculating the NDSI based on
remote sensing observations (MODIS, SPOT-4/5, Landsat-8) and comparing against ground-
based measurements. Di Marco et al. (2020) have performed a comparison into MODIS and
model-derived estimates of SCA, considering how the impact of land use and solar illumination
conditions affect this comparison. Furthermore, the same study has identified the minimum
level of incoming short-wave radiation for precise use of MODIS SCA in forested areas.

Manifestly, estimating and/or predicting SCA has numerous potential applications, yet problems
persist with its determination through remote sensing. For example, Masson et al. (2018)
have highlighted that for mountainous sites, characterised by complex morphologies, frequent
cloud cover and forests, the identified SCA is typically affected by errors. This motivates the
development and application of models capable of simulating snow cover dynamics within high-
elevation catchments, and in particular identifying the key factors that determine snowmelt.
Models of this nature can then be deployed to provide a continuous map of snow cover across
a season, filling in the times when satellite images are either unavailable or patchy, e.g. due to
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cloud cover.

According to application, a range of snow cover models have been developed, from simple degree-
day models to complex and multi-layered snow cover evolution models (Largeron et al. 2020).
Snow cover estimates from such models, though, are subject to significant uncertainty, a com-
bination of input data errors and the simplifications necessary when implementing complicated
physical processes or attempting to understand complex environments (Largeron et al. 2020).
Precise mathematical modelling of snowmelt is therefore challenging, with the precise influence
of the controlling factors difficult to deduce. For example, snow cover evolution within high-
elevation landscapes depends on the density, grain size, and microstructure of snow, the mass
and timing of snowfalls, as well as air temperature, wind, (direct and diffuse) solar radiation,
and topography. Clearly, this represents a highly stochastic and complex dynamical system,
making it difficult to apply models at a refined spatial level, due to the general unavailability or
difficulty in introducing spatial microstructure (e.g. across a catchment area) within the input
data.

Cellular Automata (CA) models have been widely used for spatial environmental modelling
(Ghosh et al. 2017), in applications ranging from forest fire propagation (Karafyllidis and
Thanailakis 1997) to soil erosion by water (D’Ambrosio et al. 2001). In the context of melting
processes, Ma et al. (2019) employed an (CA-like) Ising model to describe the ponds that form
during the melting of sea ice. This, though, takes place on an essentially flat surface, whereas
snow cover in mountain catchments will be strongly influenced by factors like aspect and slope
(Abudu et al. 2016). The potential of CA approaches for describing SCA dynamics has been
highlighted by Leguizamón (2005), advantages including their formulation without precise (and
difficult to apply) mathematical formulae and ease of simulation. Particularly, Leguizamón
(2005) noted the potential to integrate CA models with data from Digital Elevation Models
(DEM) and the like, thereby coupling to variables such as slope and insolation. Pardo-Igúzquiza
et al. (2017) have subsequently deployed CA models to estimate SCA across an area of 2000 km2

in the Sierra Nevada mountain range, calibrating and validating against MODIS fSCA (460m
resolution). Recent studies, though, call for caution in the use of MODIS for validating spatially
distributed snow models, as it does not capture the spatial heterogeneity of snow cover induced
by solar radiation (Bouamri et al. 2021). In a further CA study, Collados-Lara et al. (2021)
have assessed the impact of climate change on SCA, again for the Sierra Nevada mountain range.
Summarising, modelling SCA through CA models offer an attractive solution when satellite data
are lacking, or when they have low resolution compared with the operational resolution required
by hydrological models (Pardo-Igúzquiza et al. 2017).

The key objective of this paper is to develop a novel and calibrated stochastic CA model for
the evolving SCA of some mountain catchment area. Specifically, we focus on the fine spatial
scale, so that subtle spatial variation in the distribution of snow coverage can be captured by the
model. This, in turn, will allow the model to be used to determine whether there are distinct
drivers of snowmelt that play particularly crucial roles as the snow coverage evolves from fully
snow covered to fully exposed. The strength of the CA approach lies within the simplicity of
the underlying assumptions, in that we require just two easily-obtained inputs: the varying
elevation across the terrain, and the varying incidence angle across the terrain. Yet, despite this
simplicity, an impressive fit is obtained when calibrated against SCA estimates obtained from
high-resolution satellite images (see Section 2 for more details).

The remainder of this paper is organised as follows. In the next section we describe the study
site, the key data necessary to simulate and calibrate the model, explain the model and describe
our simulation study. We describe the results, exploring the relative necessity of different mech-
anisms to describe the dynamics of snow melt at different stages of the process. We conclude
with a discussion, speculating on the cause of discrepancies between model and imaging data
and providing the direction for future investigations.
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2. Methods

2.1. Test site and input data

2.1.1. Study site

Dora del Nivolet is a 17 km2 high-elevation Alpine catchment located within the Gran Paradiso
National Park territory in the Valle d’Aosta Region (Italy) (Fig.1). Elevation ranges from
2390 to 3430m a.s.l., with an average slope of ∼ 20◦. The left side of the Dora del Nivolet
catchment is of mainly south-east aspect and the right side is predominantly north-west facing.
This catchment presents a snow-dominated hydro-climatic regime: the surface is typically snow-
covered for roughly 6 months per year, from mid-November to mid-May, while during the growing
season the catchment surface transforms into a typical alpine meadow as snow cover decreases.
Notable are the extreme winds to which the terrain is exposed; for example, in February 2022
wind velocities of over 200 km/h were measured at Gran Paradiso National Park. Average daily
temperatures span from -15◦C during mid-winter to 20◦C during mid-summer. The geology
of the area mainly consists of gneiss, with bedrock emerging at high elevations and the talus
prevailing at medium elevations.

2.1.2. Elevation

Topographical factors play a key role during snow melt and it is possible to obtain a detailed
morphological description of the catchment region, starting from a Digital Terrain Model (DTM).
In this study we use a DTM with 10m resolution, provided through the Valle d’Aosta Regional
geoportal. A pre-processing algorithm is applied to fill DTM sinks, thus removing small imper-
fections in the input data (Planchon and Darboux 2002, Tarboton et al. 1991). We delineate the
Dora del Nivolet catchment area through the r.watershed and the r.water.outlet routines
in QGIS software. The catchment outlet point corresponds to the discharge gauging station
installed in the main stream, called “Dora del Nivolet river”. We use the catchment area for
clipping the filled DTM and export the clipped raster in .TIFF format, generating the first
input data (Fig. 1b) for the CA model described in Section 2.2. Elevation is a crucial factor
during the snow melt process, since it is inversely correlated with air temperature. Thus, while
temperature is not explicitly incorporated (e.g., Pardo-Igúzquiza et al. 2017) as a model input
data, it indirectly enters via the dependence on elevation.

2.1.3. Incidence Angle

Geomorphological attributes (including slope and aspect) considerably impact on the energy
reaching the snow-covered surface, through sunrays triggering the phase transition that initiates
snowmelt (Abudu et al. 2016). We aggregate the effect of these attributes through calculating
the so-called incidence angle (I ), defined as the angle between the sun’s ray and the normal to
the surface. Incidence angle for our study area is calculated using the r.sun.incidout algorithm
in QGIS software (Fig. 1c). Note that estimation of the incidence angle across some landscape
requires four inputs: (i) a raster layer of elevation; (ii) a raster layer of aspect; (iii) a raster layer
of slope; and, (iv) the Day Of Year (DOY) and the hour for which we want to calculate I . Inputs
(ii) and (iii) are calculated using the r.slope.aspect routine in QGIS software. Regarding the

DOY, we select 139 (corresponding to May 19th, 2018), representing the first date for which
the fraction of snow coverage across the site is lower than 1 and, hence, suggesting the onset of
snow melt. For the hour we select midday, given that it is the time of the day for which the
vast majority of pixels will be reached by sun rays. Note that using a time of midday minimises
the presence of shaded pixels; those few (39, ∼ 0.045%) shaded pixels are treated as pixels that
do not (directly) receive solar energy (i.e. incidence angle I = 90°). This incidence angle is then
used as a proxy for the amount of solar energy reaching the surface (see Section 2.2).
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2.1.4. Snow Cover masks

Data describing snow coverage evolution can be obtained through consulting high time and spa-
tial resolution satellite images. Here we use the Sentinel-2 Level-2A (L2A) dataset for extracting
snow cover masks over a Period Of Interest (POI); our study takes this period as May 25th 2018
to July 30th 2018, due to the availability of 5 cloudless multi-spectral images representative of
the phase-down of snow cover. Snowy pixels in images are classified through the commonly used
Normalised Difference Snow Index (NDSI), defined as (Dozier 1989):

NDSI :=
Rgreen −RSWIR

Rgreen +RSWIR
,

where Rgreen denotes the reflectance in the green band (Sentinel-2 band 3) and RSWIR denotes
the shortwave infrared reflectance band (Sentinel-2 band 11). L2A data is of high quality, in
which the effects of the atmosphere on the light reflected from the surface are corrected through
an Atmospheric Correction (AC) algorithm (Richter and Schläpfer 2011), applied to the Level-1C
(L1C) product. A number of recent papers have employed L2A products for calculating NDSI
(for example, Gascoin et al. 2020, 2019). Moreover, Hofmeister et al. (2022) tested the utility
of AC on snow detection with Sentinel-2 and observed increased snow detection performance at
higher elevations when using atmospherically corrected data. Further, Härer et al. (2018) noted
that even if the NDSI is an index which reduces the dependence on atmospheric conditions,
applying AC might be necessary. Thus, we have used here the Sentinel-2 L2A dataset for the
NDSI calculation.

Standard practice for producing a snow cover mask is to consider all pixels with an NDSI
value above a defined threshold. The commonly used threshold is 0.4 (Dozier 1989), but recent
studies suggest that a location-dependent threshold can provide superior results for higher spatial
resolutions (Salzano et al. 2021, Aalstad et al. 2020, Härer et al. 2018, Yin et al. 2013). Following
manual calibration of the NDSI threshold, we observed that a value of 0.2 is more suitable for the
study area considered here, since it allows a more accurate estimation of snow patches (see Fig.
8 in the Appendix). Fig. 8 indicates that while a decrease in the threshold from 0.4 or 0.2 may
not lead to substantial differences, the underestimation of real snow cover area for a threshold
of 0.4 is greater than that for 0.2, potentially resulting in greater error of the snow cover masks.
Since these masks directly calibrate the model following the random parameter search algorithm,
described in Section 2.3, we require them to be as precise as possible: consequently, we set a
threshold of 0.2. Note that lower thresholds than this are excluded, as the Snow Detection
algorithm of the European Space Agency (ESA) determines that pixels with an NDSI value
below 0.2 have effectively zero snow probability.

We calculate the NDSI via the built-in function provided by the free web application EO Browser,
powered by Sentinel Hub with contributions from the ESA. We select a sequence of five images
(on dates with no cloud cover) over the POI, revealing a gradually decreasing snow cover per-
centage, see Fig. 1d. In broad terms, we note that the initial snow melt is concentrated to the
north central region of the catchment area (highlighted region in May 25th image of Fig. 1d). An
uncovered tract emerges, predominantly expanding upslope in a southwesterly direction (arrows
in June 14th image of Fig. 1d). By late July, minimal levels of snow coverage remain, principally
concentrated around regions of higher elevation. Snow cover masks are downloaded as georefer-
enced (WGS 84 - EPSG: 4326) .TIFF files, where each mask is characterised by 366x371 pixels
with a latitude resolution of ∼ 0.00013 deg/pixel and a longitude resolution of about ∼ 0.00018
deg/pixel (∼ 14× 14m2).

2.2. Model design

A stochastic cellular automaton has been built to simulate snow melt across the study site. The
key steps considered during the design of the model were as follows:
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Figure 1: a Position and structure of the catchment area, Dora del Nivolet in the Valle d’Aosta region of north-
west Italy. b Elevation profile of the catchment site, ranging from a low of 2,390m to 3,430m. c Incidence angle
of the test site, calculated according to the terrain aspect and sun position at 12:00, May 19th 2018. d Sequence
showing the evolving snow coverage area, as estimated from remote sensing, across the period of interest (see
Section 2.1.4). The remaining snow coverage within the catchment is indicated as a percentage, in terms of
proportion of catchment area pixels still covered by snow.

i. Discretising the physical domain into a regular lattice of patches, where each represents a
square portion of terrain (of dimensions ∆x×∆x);

ii. Designating the possible patch states (snow or grass);

iii. Defining an appropriate transition probability function P (x, t), that determines the prob-
ability that a patch centred at x transitions from one state to another between time t and
t+∆t;

iv. Incorporating the environmental dependencies into the transition probability function.

i. Discretisation of the physical domain

We design our model to describe snow coverage across a landscape surface or domain, Ω. Our
model takes the form of a stochastic cellular automaton, where the physical domain is discretised
onto a simulation domain formed as a two dimensional regular lattice of non-overlapping and
space-filling cells, called patches, see Fig. 2a. Specifically, the simulation domain is formed from
the union of a set that contains a total of N patches, where patch i corresponds to a square
portion of ground of dimensions ∆x×∆x and centred at position xi. Note that we will drop the
subscript i where it can be done so without ambiguity. Note further that the patch dimensions
are according to the satellite-derived datasets of snow coverage described in the previous section.
In other words, ∆x is the spatial scale of each pixel in a snow cover mask of the study region
(∆x ∼ 14m).

ii. Patch states

Each patch is assigned a state that denotes whether the patch is covered by snow or bare ground
(hereafter referred to as grass, though of course it could also be rock or lake surface etc). We

6



Figure 2: a Domain representation. The catchment region is discretised onto a regular square lattice, with each
patch the dimension of a pixel from the satellite image data (∼ 14× 14m2). Patch state is binary: snow (white)
or grass (green), with the transition dynamics governed by the state of the Neumann set of nearest neighbours
(hatched red squares for the patch indicated xi) and inputs based on elevation data and incidence angle data. b
Measures used to fit the model against satellite image data. Satellite data and simulation outputs are compared
at equivalent stages of remaining snow cover area (here, 70.3%). At each stage, the map of snow or grass cover
(respectively, white or black pixels) is recorded, as is the length of the snow/grass interface (length of purple/green
lines). The two measures are the interface-based error, Ei, and the coincidence-based error, Ec. The interface-
based error is simply the absolute difference in interface length, normalised with respect to the total number of
patches. The coincidence-based error is the sum of the (absolute) difference between patch states, again normalised
with respect to the total number of patches. In the difference map, white pixels indicate match between satellite
data and simulation, while red (blue) indicates snow (grass) in satellite data but grass (snow) in simulation. The
coincidence error is hence based on the sum of blue and red pixels, divided by the total number of patches. c An
explicit calculation of coincidence and interface errors, for a hypothetical satellite dataset and three separate runs
of the simulation model. Green and white squares represent grass and snow, respectively, while red lines indicate
the interface. Squares marked with crosses indicate a mismatch in the patch state. See text for details.

denote the state of a patch at x at time t by S(x, t), where S = 1 represents snow coverage and
S = 0 represents grass. This simplification to a square lattice of binary state patches facilitates a
straightforward comparison with the satellite-imaged data where, as described above, each pixel
can be attributed as snow or bare ground. At the start of each simulation we assume 100% snow
coverage across the domain, S(xi, 0) = 1 for i = 1 . . . N . Since snow melting is an inherently
stochastic process (e.g. local temperature fluctuations, shifting wind patterns etc), we model the
transition from snow to grass at a patch as a Markov (i.e. memoryless) stochastic process. Note
further that we do not allow the reverse process, i.e. from grass to snow. This, in effect, supposes
a one-way process across a season in which fresh snowfall is either negligible or rapidly melts.
The CA approach allows us to forsake a more physics-based description, permitting instead a
phenomenological approach that facilitates straightforward simulation and calibration.

iii. Snow to grass transition probability

For a patch located at position x, the probability that it melts during the time interval [t, t+∆t]
is assumed to be

P (x, t) = e−ρf(x,t) , (1)

ensuring P (x, t) is bounded between 0 and 1 for ρ ≥ 0 and f(x, t) ≥ 0. The melt likelihood
parameter ρ is an independent parameter that sets the likelihood of snow melt occurring during
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the time interval [t, t +∆t], and we take this here to be a constant. Note that the exponential
dependence generates multiple orders of variation in the probability of snow melt, allowing the
different factors to have a potentially large impact on snow melt.

iv. Transition dependencies

The function f(x, t) forms the focal point through which factors that influence snow melting
can be introduced. As noted above (see Fig. 2a), here we consider a dependence on each of:

(i) elevation, E ;

(ii) sun incidence angle, I ;

(iii) neighbourhood state, N.

Dependence on the sun incidence angle accounts for the fact that terrain more heavily exposed
to sun will receive greater energy. As described earlier, a patch at x is associated with an angle
Θ(x) ∈ [0◦, 90◦], where Θ(x) = 0◦ (Θ(x) = 90◦) indicates orthogonal (parallel) rays. This angle
is straightforwardly rescaled onto a function a(x) ∈ [0, 1], where a(x) = 1 (a(x) = 0) indicates
that the patch at x receives maximum (minimal) direct energy.

Elevation is also expected to impact on the rate of snow melt, since higher terrain is linked
to lower air temperatures and greater snowfall. Elevation is encoded into the model similar
to incidence angle above, i.e. through a rescaled function e(x) ∈ [0, 1] in which a patch at x
satisfying e(x) = 1 (e(x) = 0) correspond to patches with lowest (highest) elevation across the
domain.

Dependence on neighbour state introduces a source of nonlocality: snow melt in a patch could be
more likely if surrounding patches have already melted. This could be derived from a similarity
between neighbouring sites not explicitly included through dependence on elevation or aspect:
for example, similar initial snow depth, microclimate, ground composition etc. It could also be
viewed in the light of local heat transfer, where the lower reflectance of grass compared to snow
will lead to the absorption of more solar energy in the neighbourhood, if surrounding patches
have already melted. Without specifying the precise source of this neighbourhood dependence,
for each patch i we keep track of the (time-dependent) proportion of grass covered neighbours.
Letting Ni denote the set of neighbouring patches (and |Ni| the number of neighbouring patches)
with respect to the patch indexed by i, the proportion of grass-covered neighbours for patch i
will be

b(xi, t) = 1−
∑
j∈Ni

1

|Ni|
S(xj , t) .

Note that the set of neighbours is based (for an internal patch) on the 4 nearest neighbours, i.e.
according to a von Neumann neighbourhood (e.g. see Ghosh et al. 2017).

Summarising, a(x), e(x) and b(x, t) are functions bounded between 0 and 1 and provide measures
for the incidence angle, elevation and neighbourhood state, respectively, for a patch at position
x and time t. We amalgamate these into a governing function, f :

f(x, t) =
(1 + αpāp)(1 + βq ēq)

(1 + αpa(x)p)(1 + βqe(x)q)(1 + γrb(x, t)r)
. (2)

The weighting parameters α, β and γ are dimensionless and non-negative, their sizes reflecting
the influence of incidence angle, elevation and neighbourhood state on snow melt, respectively.
Regarding the nonlinearity parameters p, q and r, we consider two model formulations. The
basic model simply assumes p = q = r = 1, a linear relationship which minimises the fitting to
just 4 parameters (the weighting parameters, along with the independent parameter ρ). We also
consider an extended formulation, where p, q, r can also be varied to provide greater subtlety in
the calibration.
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Note that a = 1
N

∑N
i=1 a(xi) and e = 1

N

∑N
i=1 e(xi) denote the mean incidence angle and mean

elevation averaged across the domain, respectively. The factor in the numerator of Eq. (2)
is therefore a normalisation, so that f(x, t) = 1 for an average patch at t = 0, irrespective of
(α, β, γ). An average patch at t = 0 refers to a patch with incidence angle and elevation at the
mean values, and with only snow-covered neighbours: i.e. a(x) = ā, e(x) = ē, b(x, 0) = 0. We
note further that f(x, t) is decreasing with respect to each of a, b and e and will therefore be
maximum for a patch satisfying (a(x), e(x), b(x, t)) = (0, 0, 0) (no direct sun, highest altitude
and snow-covered neighbours) and minimum for a patch satisfying (a(x), e(x), b(x, t)) = (1, 1, 1)
(fully exposed, lowest altitude and grass-covered neighbours). Given the decreasing dependence
on f in Eq. (1), snow melt in a given timestep is then least likely (most likely) for the former
(latter).

The numerical simulation algorithm for simulating the model was implemented in Matlab©

and is described in Appendix C. We note that the code (along with necessary inputs) has also
been made available to download at https://github.com/kjpainter/SnowMeltNivolet.

2.3. Model analysis and fitting

Overall the model requires a set of fixed inputs obtained from data (elevation and incidence
angle of each patch, geometry of the domain), along with a set of governing parameters. The
parameters fall into two principal classes: those describing discretisation of space and time (∆x,
∆t), and those that govern the probability of snow melt in a patch (ρ, α, β, γ, p, q, r).

In terms of discretisation parameters, ∆x corresponds to the resolution of snow cover masks
(here, ∆x ∼ 14m). For ∆t we assume this to be dimensionless in the present study. This
exclusion of explicit time is a simplification that allows us to focus on the spatial pattern of
snowmelt – e.g. where melt occurs at different stages – rather than the snowmelt rate. This
in turn simplifies the model fitting (described below). In the discussion we provide further
commentary on this point.

Appropriate parameters (ρ, α, β, γ, p, q, r) will vary according to the geographical and geomor-
phological features of the study site. The phenomenological nature of the model precludes direct
estimates of these from observations, and it is probable that there is no unique optimal param-
eter set (i.e. parameters that give a globally best fit against the estimated snow cover masks).
Therefore, our analytical approach here will be to assess the goodness of fit across a spectrum
of models of increasing complexity, through adopting a randomised parameter search and trial
process. Specifically, we proceed as follows:

i. Classify the models to be tested, through designating a region of (ρ, α, β, γ, p, q, r) param-
eter space to explore;

ii. Randomly sample parameter space to generate a set of parameter combinations to test;

iii. Perform simulations at each parameter combination in the set, recording information on
the evolving snow/grass distribution;

iv. Assess the goodness of fit for a particular parameter combination though comparing sim-
ulation data against the coverage estimated from satellite-derived snow masks.

v. Assess the goodness of fit of a particular model through evaluating performance across
top-ranking parameter combinations.

i. Sequence of models to be tested

The initial aim is to explore which of the considered dependencies allow for better or worse
recapitulation of the snow melt distribution estimated from remote sensing. To this end, the
first study will focus on a basic model scenario (p, q, r fixed such that p = q = r = 1), in which
we systematically explore eight sub-models of varying level of complexity. These are as follows:

• The null model, 0-model, where none of the dependencies are incorporated. This serves as
a baseline case for reference.
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Parameter
Basic Basic Basic Basic Basic Basic Basic Basic Extended
Null I E N IE IN EN IEN IEN

ρ [2, 10] [2, 10] [2, 10] [2, 10] [2, 10] [2, 10] [2, 10] [2, 10] [2, 10]
α 0 (0, 9] 0 0 (0, 9] (0, 9] 0 (0, 9] (0, 9]
β 0 0 (0, 9] 0 (0, 9] 0 (0, 9] (0, 9] (0, 9]
γ 0 0 0 (0, 9] 0 (0, 9] (0, 9] (0, 9] (0, 9]

p, q, r 1 1 1 1 1 1 1 1 [0, 3]

Table 1: Parameter ranges for the random sampling of parameter space and the fitting against satellite-based
estimates of snow coverage. The snowmelt likelihood parameter ρ is varied in all models. Parameters α, β, γ
define the weighting of the dependency on incidence angle, elevation or neighbouring state, respectively; setting
any of these to zero effectively removes that dependency from modelling of snowmelt, generating a sequence of
submodels. The nonlinear parameters p, q, r are set to 1 within the basic models, but allowed to vary for the
extended model and hence provide further refinement to the fitting procedure.

• Single-layer models, I-,E-,N- models, where only one of incidence angle (I), exposure (E)
or neighbour (N) dependency is included

• Double-layer models, IE-, IN-, EN-models, where two of incidence angle, exposure and
neighbour dependency are included.

• A triple-layer model, IEN-model, where all three dependencies are included.

Each model is implemented by setting the permissible range of the relevant weighting parameter.
For example, for the null model the only parameter allowed to vary is the snowmelt likelihood
parameter ρ, with each of the dependency weighting parameters α, β, γ set to zero. For the
IN-model, on the other hand, each of ρ, α and γ are positive, with only β set to zero. The
second study will then compare the basic IEN-model with an extended IEN-model, where in the
latter case the parameters p, q and r are allowed to vary. Summarising, each of the models to
be tested corresponds to exploring a particular regime of the (ρ, α, β, γ, p, q, r) parameter space.

In the absence of observations that can set parameter values, we set ranges for each of the
parameters that will allow both a broad region of parameter space to be explored, while also
allowing simulations to be performed within computationally reasonable times. Note that the
adoption of the exponentially decaying form (1) already allows probabilities to vary across
numerous orders of magnitude as certain parameters are altered. The choice of ρ determines
the probability of snow melt in a single timestep for an average patch at the start of snow
melt (t = 0). Setting ρ ∈ [2, 10] allows this probability to vary between O(10−1) and O(10−5):
probabilities much higher than ∼ 10−1 will lead to almost immediate snow melt across the
entire domain (unrealistic), while probabilities below ∼ 10−5 demand exorbitant computation
time (unfeasible).

Parameters α, β, γ, when “switched on”, are set at (0, 9). These ranges allow each mechanism
to generate a tenfold variation in the size of f , and (given the exponential form) even larger
variation in the size of the probability (1). Under the extended formulation we assume p, q, r
can take on values between 0 and 3. The sub-models and permitted parameter ranges are
summarised in Table 1.

ii. Parameter space sampling

For each model listed in Table 1, simulations are conducted at given (ρ, α, β, γ, p, q, r) parameter
combinations. First, 5000 parameter combinations are randomly generated through sampling
from the relevant region of parameter space. To establish a relatively even distribution of sample
points within the parameter space, a Latin Hypercube Scheme is adopted (McKay et al. 1979);
operationally, we adopt the lhsdesign routine in Matlab©. We note that the density at
which the parameter space is sampled will depend on the dimensionality of the parameter space:

10



thus, for example, the parameter space of the triple layer model is sampled at a lower density
than each of the double layer models. Nevertheless, we sample the same number of parameter
combinations for each model, so that statistics are compared across an equivalent number of
simulations.

iii. Simulation protocol

The stochastic nature of the model means that the precise output will vary with each simulation,
even under the same inputs. Consequently, for each model at each parameter combination, 5
simulations are performed and the results are averaged. Note that exploratory analyses demon-
strated that the fit under a particular parameter combination would vary minimally across these
5 simulations (for example, see Appendix D), hence this number was deemed an acceptable com-
promise between accuracy and computational cost. Overall, with the number of models (9), the
number of tested parameter combinations for each model (5000) and the number of simulations
for each parameter combination (5), more than 200000 simulations of the model were performed
for the analysis presented here. We note that the results of an analysis with fewer parameter
combinations (1000) and fewer simulations per parameter combination (3) gave qualitatively
similar behaviour, suggesting that our exploration was sufficiently deep to generate meaningful
conclusions.

iv. Error measures and goodness of fit

To assess the goodness of fit for a particular model at a particular parameter combination, it is
necessary to specify error functions that compare simulation output with the satellite derived
SCA estimates. Let Sz%

si (xi) denote the snow coverage (1 = snow, 0 = grass) from satellite image
masks (see Section 2.1.4) at pixel or patch xi, when snow coverage is at z% of the domain. The
corresponding snow coverage from the stochastic simulation model at xi is recorded at the
equivalent stage of domain coverage, and denoted by Sz%

ss (xi).

We consider two error measures, based on the spatial coincidence and the snow-grass interface,
see Fig. 2b. Spatial coincidence is simply the mean of the absolute difference between satellite
image and simulation output. For a satellite image indicating z% coverage, we set

Ez%
c =

1

N

N∑
i=1

∣∣∣Sz%
si (xi)− Sz%

ss (xi)
∣∣∣ (3)

A value Ez%
c = 0 indicates perfect match between the satellite image and the model at z% snow

coverage. For the interface error we first compute the total length of the interface between snow
and grass patches/pixels, denoting these lengths by Lz%

si and Lz%
ss for the satellite image and

stochastic simulation at z% coverage, respectively. The error based on interface length is then
computed as

Ez%
i =

1

N

∣∣∣Lz%
si − Lz%

ss

∣∣∣ . (4)

Again Ez%
i = 0 indicates that the snow/grass interfaces calculated for the satellite image and

simulation output are of the same length at z% = 0, although we note that this could occur
even if Ez%

c > 0. The two errors are combined into an amalgamated error function

E =
1

|Z|
∑
z∈Z

λEz%
c + (1− λ)Ez%

i . (5)

The parameter 0 ≤ λ ≤ 1 weighs the relative contribution of coincidence and interface errors:
note that the majority of the analysis/presentation of the results is according to the value
λ = 0.75 (default), but results are also presented for λ = 1 and λ = 0. The rationale for the
default value is included in the Results below, with more detail in Appendix D. Z denotes the
set of masks used in the calibration of the model to satellite imaging data, while |Z| denotes
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the number of elements in this set. Note that the majority of the analysis will be based on
calibration against all available snow cover masks, for our case study

Z = {96.0%, 70.3%, 59.1%, 18.0%, 4.3%} . (6)

Calibrations will also be performed against a single snow cover mask, for example choosing
Z = {59.1%} if collaborating against the estimated snow melt near the middle of the POI.

Note that the rationale for an overall error that combines coincidence and interface match is
illustrated through the hypothetical scenario shown in Fig. 2c. Coincidence is the obvious
measure, yet relying solely on this can be flawed, as shown by comparing runs 1 and 2. While
run 1 displays an identical snow melt shape, displacement in the shape leads to poorer coincidence
than the speckled output from run 2. The additional comparison of interface length introduces
a cost to significantly distinct shapes. A more optimal output may be of the form of run 3,
where neither coincidence nor interface error is excessively high.

Coincidence and interface error measures, Eqs. (3) and (4), are calculated for each simulation
and at each stage of snow melt using in the fitting, i.e. based on the choice of Z.

v. Ranking of parameter sets and models

Given a value of λ and the specification of Z, for each simulation of the model Eq. (5) can be
calculated. To obtain the goodness of fit under a certain parameter combination, the error Eq.
(5) is then averaged across the 5 simulations. Following the full set of simulations over 5000
parameter combinations for a model, the parameter combinations are ranked from lowest (i.e.
best fitting) to highest (i.e. worst fitting) error. Inevitably, many of the (randomly sampled)
combinations originate from regions of parameter space that generate a poor fit with respect to
the estimated SCA masks. Consequently, a model’s capacity to fit data is examined based on its
performance within the 1% top-ranked parameter combinations. Errors (e.g. see Appendix D)
are noted to deviate only within a few percent across these 1% parameter combinations, while it
also ensures enough combinations are used within the analysis to avoid the issues of sensitivity
that could arise when a specific parameter combination is used. Note that results when using
the top 0.5% or top 2% were qualitatively equivalent.

3. Results

3.1. Fitting of the basic model

The null model excludes dependence on incidence angle, elevation or the neighbourhood, i.e.
an environment of uniform elevation and independent patches. Hence, the mean number of
time steps until a given patch transitions into grass varies only with ρ. Snow melt in the null
model (representative simulation in Fig. 4a) is characterised by a random transition to grass in
“salt and pepper” fashion, and (unsurprisingly) a poor fit against satellite data. Therefore, we
adopt this as the baseline and errors for the various models analysed are reported in terms of
improvement over the null model.

We explore how the different factors contribute to distinct snow melt characteristics. To this end,
we compare the models based on a ranking according to only coincidence-based error (λ = 1) or
only interface-based error (λ = 0). Results are presented in Fig. 3 a,b. Overall, incorporation
of elevation data leads to the best spatial correlation between satellite-derived snow masks and
simulation (top four models all include elevation data, Fig. 3a), while dependence on neighbour-
hood state leads to the best interface-based error (top four models all incorporate neighbourhood
dependence, Fig. 3b). Directly examining simulation output offers further insight and, to aid
explanation, a set of representative simulations for each single layer model is included in Fig. 4.

Incorporating elevation and/or incidence angle data biases melt towards particular regions, Fig.
4b,c. Incidence angle concentrates the initial snow melt north-west of the Dora del Nivolet
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Figure 3: a Coincident-based and b Interface-based error improvement for each model, with respect to the null
model. Specifically, we compute the mean error across the top 1% ranked parameter sets in each model class,
following the sampling of the parameter space. In a the ranking is according to Eq. (5) with λ = 1, while in b
λ = 0. c Values of the weighting parameters (α, β, γ) in the top 1% ranked parameter sets for the IEN-model,
based on λ = 0.75 in Eq. (5). The dashed-red lines indicate the mean values for each of α (aspect), β (elevation)
and γ (neighbourhood). Note that for all simulations, calibration is against all available snow cover masks, i.e.
Z is given by Eq. (6).

valley, along with other terrain with a sun-facing aspect. Elevation, meanwhile, concentrates
snowmelt along the lower altitude valley along which the stream runs. These regions are broadly
consistent with early snow melt observed in satellite images, yielding reasonable coincidence-
based error. However, incidence angle or elevation on their own will continue to result in a
highly speckled pattern, as melting at one site has no direct impact on melting at neighbouring
patches. This lies in contrast to satellite images, where initial points of snow melt expand to
form large tracts of uncovered ground. Speckling manifests in a higher snow-grass interface,
compared to satellite data, and consequently poor error when the interface-based measure is
taken into consideration.

Dependence on the neighbourhood explicitly assumes a greater likelihood of melt if neighbouring
patches have melted. This leads to points of melt that expand and fuse, Fig. 4d, and this patch to
patch linking of snowmelt can dramatically improve the interface error; for example, we observe
a close to 100% improvement against the null model, Fig. 3b. However, in the absence of a
localising bias this occurs uniformly across the domain and a poor coincidence-based error results
when only neighbourhood dependence is incorporated. Consequently, an error that balances the
two measures is needed to derive suitable parameter sets. For the remaining analyses we use
the default λ = 0.75 in Eq. (5), see Appendix D for full details.

Representative simulations of best-fit parameter sets for each double layer model and the triple
layer model are provided in Fig. 5. The combination of neighbourhood and at least one of
elevation or incidence angle allows plausible calibration of the model against data, Fig. 5b-d:
elevation and/or incidence angle provides the initial localising bias, with neighbourhood depen-
dence expanding melt into spatially extended tracts of exposed ground. Excluding a neighbour-
hood effect, though, continues to generate speckling, Fig. 5a, and hence less improvement with
respect to interface error.

The best-fitting model is the IEN-model, to be expected given that other models arise as a
limiting case (e.g. the EN-model arises as α approaches zero). More surprising, though, is the
relatively small difference between the EN-model and IEN-model: compare the similar snow melt
pattern in Fig. 5c,d and the minimal difference in errors (Fig. 3a,b). Examining the weighting
parameters (α, β, γ) in the basic IEN-model across the top 1% parameter sets, Fig. 3c, the
mean of α (incidence angle) across best matching sets is significantly smaller than those of β
and γ (elevation, neighbours). Thus, excluding incidence angle (setting α = 0) has a relatively
small impact on the pattern of snow melt. This suggests that a reasonable “minimal model”
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Figure 4: Representative simulations of the “best-fit” parameter set solution for the null and single layer models.
For each model class, the best-fit parameter set was selected as the top-ranked set following the parameter space
sampling and calibration against satellite data, according to the mean of the errors (Eq. (5)) when averaged over
5 simulations for each tested parameter set, using λ = 0.75 and calibrating against all snow cover masks, Eq. (6).

for snow melt could perhaps be limited to just neighbourhood and elevation dependence. We
note further that the top 1% parameter sets for the basic IEN-model demonstrate reasonable
fluctuation about the mean values of each of α, β, γ, despite the overall fit/error being similar.
This suggests that the model is not sensitive to the precise choices of the parameters, rather it
is the relative values of these parameters with respect to each other that is of importance.

3.2. Fitting against single snow cover masks

The analysis above followed a calibration against all satellite snow cover masks (for our case
study, a total of 5). This is logical in the context of capturing spatial snow melt across a season,
but may also generate certain biases. Data is only available when cloud cover is negligible,
leading to a nonuniform distribution of masks across time. For instance, we have two relatively
close datasets (70.4% and 59.1% coverage, 5 days apart) followed by one at 18.1% coverage

14



Figure 5: Representative simulations of the “best-fit” parameter set solution for the double and triple layer models.
For each model class, the best-fit parameter set was selected as the top-ranked set following the parameter space
sampling and calibration against satellite data, according to the mean of the errors (Eq. (5)) when averaged over
5 simulations for each tested parameter set, using λ = 0.75 and calibrating against all snow cover masks, Eq. (6).

(20 days later). Further, calibrating against all datasets across the period of interest implicitly
assumes that the weighting of the individual contributing factors remains constant throughout
snowmelt.

To understand the impact of these assumptions, we perform a series of calibrations against a
single snow cover mask, e.g. setting Z = {96%} in Eq. (5). In this way, we examine whether
better fitting is possible when the strength of different influences is allowed to change across the
course of the season. Fig. 6 synthesises the results of the analysis.

Notably, optimising the model against the earliest available snow cover mask (96.0% coverage)
significantly increases the weighting with respect to incidence angle, Fig. 6a. Typical model
output when calibrated at this early stage leads to a more spatially restricted snowmelt, con-
centrated in the upper central region and broadly consistent with satellite data. Optimising the
model against mid-POI satellite images leads to weighting parameters dominated by elevation

15



Figure 6: Fitting of the basic IEN-model against single snow cover masks, where a Z = {96.0%}, b Z = {70.3%},
c Z = {59.1%}, d Z = {18.0%}, e Z = {4.3%}. Top row shows the weighting parameters in the top 1% ranked
sets (according to Eq. (5) with λ = 0.75), where the dashed red line shows the mean. Second row shows a
representative simulation for the best fit parameter set, at the relevant stage of remaining snow cover. Third row
shows the corresponding snow cover predicted from satellite data.

and neighbourhood, with results very similar to those when calibrating against the full set of
snow cover masks. This reflects the greater data available within this period. When it comes
to optimising against the latest stage of snowmelt, however, we once again observe a greater
weighting for incidence angle.

Summarising, fitting against single satellite images suggests that an optimal model (and future
extension of the framework) could include temporal variation across the course of the season, in
terms of the influence of the different factors, whereby incidence angle becomes more significant
during early and late stages of snow melt.

3.3. Fitting of the extended model

The above analysis concentrated on the basic framework, i.e. Eq. (2) with p = q = r = 1. With
a maximum of 4 parameters in the fitting, this allowed (relatively) fine scale exploration of the
parameter space, but may also limit the degree to which the various controlling factors could
influence snowmelt. Under the extended form, greater subtlety can be obtained (see Fig. 11
in the Appendix). Briefly, altering p and q concentrates or disperses the spatial heterogeneity
generated from incidence angle and elevation, while changing r alters the characteristic scale of
melted tracts that spread from initial points of melt.

We analyse whether the extended model provides benefit in terms of calibration, now also
allowing each of p, q and r to range between 0 and 3 when it comes to the random sampling of
parameter space, in addition to the earlier ranges for (ρ, α, β, γ) (see Table 1). The basic model
is a subclass of the extended model, so it is natural to expect the extended form to perform as
well or better, in the idealised case of full parameter space exploration. However, given that the
extended model contains almost twice the number of parameters to fit (7 against 4), sampling
of parameter space for the same number of parameter sets (near equivalent computational cost)
results in sparser exploration and uncertain benefit gain.

Results and typical simulations are presented in Fig. 7a. Comparing errors for the top 1% fitting
sets in the extended-IEN model, against those in the basic model counterpart, we find significant
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Figure 7: Fitting of the extended model. a Statistics following a 5000 set sampling of the parameter space,
comparing the extended IEN-model against its basic counterpart. Ranking (using all available snow masks and
λ = 0.75 in Eq. (5)) the top 1% parameter sets, the extended model consistently outperforms the basic model
with an almost 5% error improvement. Comparing the best fitting set for each of the extended and basic model,
coincidence and interface errors are near-universally improved across all stages of snow melt. b Representative
simulation using the best-fit parameter set for the basic model; c Representative simulation using the best-fit
parameter set for the extended model; d Snow cover masks from satellite images; e Difference between extended
model and SI data, where red (blue) pixels indicate melt in the extended model (SI), but not in the SI (model),
while white pixels indicate a match. A video showing the spatial evolution of snow melt is included in the
Supplementary Information and made available at https://youtu.be/M5FwGGA-2cE

gain from using the extended model: an almost 5% error improvement across the top 1% fitting
sets, Fig. 7a (left panel). Furthermore, when comparing coincidence and interface errors at
various stages of snowmelt, the top ranking parameter set in the extended model showed near
universal improvement in coincidence and interface match, Fig. 7a (middle and right panel).

To analyse how this improvement manifests itself at the spatial level, in Fig. 7b-e we compare
representative simulations from the extended and basic model, under ‘best-fit’ parameter sets,
against satellite snow cover masks. In particular, the extended model is found to replicate

17



subtleties observed in the satellite derived images. For example, we observe that snow melt
becomes more concentrated to the upper middle portion of the domain during early snow melt
(ellipses at 96.0%), earlier snow melt on the south slope in the northwest high elevation terrain
(ellipses at 70.3%), and more clearly defined stripes extending southwesterly (circles at 59.1%).

Nevertheless, some notable discrepancies remain and we highlight these via the difference map
(Fig. 7e). Most prominently, our model consistently overestimates snow melt rate within the
south eastern corner (square at 70.3%). Another notable discrepancy lies in the distinct snowmelt
in the southwest (southwest square region at 18.0%), where while the model predicts “fingers
of melt” that extend southeast, satellite data indicates stripes that curve into a southwest
to northeast orientation. Furthermore, our model underestimates the snow melt in the high
altitude northwest corner (square at 18.0%), but overestimates the melt occurring along the
southern boundary (rectangle at 4.3%). Potential explanations for some of these discrepancies
are discussed below.

4. Discussion

Monitoring snow cover is crucial for understanding the hydrology of mountain environments
(Largeron et al. 2020), with the snow pack constituting a precious water source that demands
carefully management (SDG6). Satellite images can provide only instantaneous snapshots of
snow cover and clouds frequently obscure detail. As such, there exists an information gap that
could be filled by a predictive model, sufficiently refined to predict evolving snow coverage at
the operational resolution required by hydrological models (Pardo-Igúzquiza et al. 2017). In this
study, we have developed a fine-scale stochastic cellular automaton model that describes how
the spatial pattern of snow cover evolves across a mountain catchment. Notably, our case study
represents a somewhat extreme example: an elevation gain of more than 1000 metres across the
catchment, complex topography, exposure to extreme climatic conditions (Gisolo et al. 2022).

An advantage of the model lies in its formulation, requiring just two easily available spatial in-
puts: elevation and incidence angle. Both are relatively easy to acquire from regional or national
geoportals and GIS software, and hence the model can be directly applied to other locations.
Accordingly, at each point of time, the probability of snow melt within a particular patch is
assumed to be governed by just three factors: elevation (E) (a partial proxy for temperature),
sun incidence angle (I), and the remaining snow coverage in neighbouring patches (N). Tem-
perature and sun (largely, solar radiation) have been considered as drivers of snowmelt in a
range of models (Zhou et al. 2021), while a dependency on the state of neighbouring cells is
a fundamental feature of CA models (Ghosh et al. 2017); as such, our model forms a mixed
cellular automaton (Pardo-Igúzquiza et al. 2017).

The model is calibrated against snow coverage masks estimated from Sentinel-2 satellite images.
The employment of this relatively recent remote sensing product, already successfully used for
creating high-resolution operational snow cover maps (Gascoin et al. 2019), limits some of the
problems highlighted in a recent study that investigated the use of the MODIS product for snow
detection (Bouamri et al. 2021).

Despite its relative simplicity, the model is capable of yielding an impressive fit against satellite
data. A reasonable fit can even be obtained within a “bare-bones” framework that uses just E
and N, without considering I. A somewhat similar finding has been obtained by Saydi et al. (2019)
when comparing the performance of a Snowmelt Runoff Model (SRM) that incorporates solar
radiation with those based on a temperature-index, for the Urumqi River basin in the Xinjiang
Uyghur Autonomous Region of China. Explicit consideration of solar radiation was found not to
significantly improve model performance, since it is effectively a temperature-dependent energy
source. However, we remark that when all three dependencies are included (i.e., also including
the incidence angle), particularly within the extended IEN-model formulation, our model was
capable of capturing additional subtle features of SCA changes. Our analysis reveals that I plays
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an important role during early stages of the process suggesting it provides the identification of
regions that receive sufficient solar energy to trigger snowmelt. Inevitably any extensions carry
a computational cost: stepping up from the basic to the extended model involves an almost
doubling of the dimension of the parameter space, so the searching of suitable parameter sets
becomes more challenging. Nevertheless, the extended model was still found to offer benefit in
terms of improved fit to data, even for approximately equivalent computer resources (the same
number of sample points). This suggests that further explorations would benefit from adoption
of the extended model framework.

Of course, E, I and N constitute only a fraction of the factors that are likely to play a role
in the snowmelt process. Many others (e.g. blown snow, frozen ground, rain-on-snow etc.)
can be conceived, but at present the majority of models do not include such processes and
thereby allow investigation into whether they will improve the accuracy of snowmelt simulations
(Zhou et al. 2021). Indeed, in the context of the present site (expanded on further below),
a number of discrepancies arise between the fitted model and the snow cover masks which
could be attributed to missing key ingredients; in particular, we note that the catchment test
site used in the present study is exposed to extreme winds, potentially accumulating snow or
covering/uncovering particular patches.

Extending the model to include all potential factors that influence snowmelt – e.g. snow
depth/density/structure – would, however, generate a complex model, with a high dimensional
parameter space. In light of this, the simplicity behind complexity (Salcido 2011) feature of
CA models allows a significant degree of complexity to be condensed into a single nondescript
term, the neighbourhood. The assumption that melting in a neighbouring patch increases melt-
ing likelihood can be partly attributed to processes of surface albedo feedback and local heat
transfer: surface albedo feedback drives warming at high elevations, with proximity to less re-
flective (and hence more energy absorbing) surfaces, such as grass, accelerating local snowmelt
(Hernández-Henŕıquez et al. 2015, Ingram et al. 1989). Indeed, best-fitting parameter sets under
the various models consistently require non-negligible weighting for the strength of neighbour-
hood influence, suggesting that this mechanism is a necessary component for a good-fitting
model. Neighbourhood influence introduces nonlocality into the model, at a spatial scale linked
to the spatial scale of patches. Here the patch dimensions are those of the employed snow cover
masks (∼ 14 × 14m2) and the neighbourhood constitutes just the four nearest neighbours (a
von Neumann neighbourhood). An important future investigation, therefore, would be to ex-
plore neighbourhoods of different dimensions and observe how the weighting of neighbourhood
dependence varies with the spatial scale of patches, e.g. through fitting against lower or higher
resolution satellite data. In this regard, various studies (despite their different aims) have shown
that such considerations can impact on the output of CA (e.g., Pan et al. 2010, Moreno et al.
2009, Chen and Mynett 2003). This in turn would provide further insight into the feasibility
of using CAs to describe SCA changes across distinct spatial scales and locations: from the
complex and fine scale catchment area considered here to the much larger areas explored in
previous models (e.g. Pardo-Igúzquiza et al. 2017), or lower elevation sites, areas with smoother
and more gradual slopes, distinct aspect etc.

Regarding the inputs, while elevation is a naturally fixed variable, the reduction of incidence
angle to a constant-in-time function simplifies reality, where the position of the sun changes
across the course of the day and year. Our streamlining process has involved setting incidence
angle via a midday position at the initial stage in the snow-melt season; it would be possible,
of course, to extend to a time-dependent incidence angle, although this would inevitably de-
mand greater preprocessing of data. Encompassing time-variable inputs will expand the range
of model application and, in particular, allow climatological variability to be included. For ex-
ample, through extending to include temperature and precipitation variation, the model could
be used to examine the sensitivity of snowmelt under a range of climate-change induced sce-
narios (Pardo-Igúzquiza et al. 2017,Collados-Lara et al. 2021), contributing towards SDG13.
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Arriving at this stage will require further optimisation, and in particular a fitting of the model
to describe how snow coverage fraction evolves over time. The present study has downplayed
the temporal component, concentrating on the spatial characteristics of snow melt. Taking
this further step would demand re-evaluation of certain model assumptions, in particular those
placed on parameter ρ. ρ can be viewed as an independent (i.e. independent of elevation etc)
rate controlling parameter, where lower ρ generates (on average) faster snowmelt at a particular
site. We have treated ρ as constant across the course of a simulation, but the hidden assumption
here is that, for a patch surrounded by snow, the likelihood of snow melt when there is 10%
coverage across the catchment will be the same as that when there is 90% coverage. This, of
course, fails to acknowledge that a 10% SCA stage corresponds to much later in the summer,
by which time mean air temperatures have considerably risen and snowmelt will be occurring
at a greatly accelerated rate. This could be incorporated through extending ρ to be a function
of time, marking progression into warmer months.

The phenomenological nature of the model precludes direct estimation of parameters from ex-
periments. This is somewhat a weakness of CA (and similar frameworks), in that the defining
parameters do not straightforwardly link to a measurable quantity. An advantage, however, lies
in that we subsequently assess the model according to its ability to fit data when parameters are
randomly selected from a broad region of parameter space. The subsequent analysis showed that
numerous parameter combinations yield a similar degree of fit (see Section D), suggesting that
the model is not sensitive to a specific parameter combination, rather it is the relative weight of
the various influencing factors that are of importance.

5. Conclusions

We have calibrated a CA model against estimated snow cover for the “Dora del Nivolet” catch-
ment in the Gran Paradiso National Park, North Italy. The fitted model shows an impressive fit
against data, recapitulating both general (for example, spatially extended melt tracts that form
in the lower valley and extend upwards over time) and subtle (for example, localised melt and
stripes on sun-facing slopes) features of the snowmelt process. However, some notable discrep-
ancies remain between the SCA predicted in best-fitting simulations, and that deduced from
satellite data. Notably, these discrepancies may be used to highlight some potential missing
factors within the model, which we expand on below.

• The first (and probably the most prominent) model/data disparity lies in that the model
predicts much faster snowmelt around the south-east corner of the catchment. From
the perspective of the model, this is natural: the region has (relatively) low elevation,
reasonable exposition to sun and lies adjacent to the region of initial snow melt. From the
model assumptions, therefore, there is nothing to lead to delayed snowmelt for this region.
Located at the upper end of the central valley through which the Dora del Nivolet runs,
it is possible that prevailing winds act to channel precipitation and/or accumulate snow,
leading to greater depth/density of snow. Further, mountain lakes here may generate local
microclimates hard to be captured by the model.

• A second discrepancy lies in characterising the snowmelt across the more gently sloping
terrain that leads up towards the south and west ridge boundaries of the catchment. Snow
melt in this region appears to be highly intricate, with satellite data revealing a complex
pattern of “fingering” as melt extends into the higher ground. While our model partially
captures this fingering, it does not replicate the late stage “curving” of remaining snow
stripes. Here, our model may be somewhat limited by its resolution and neighborhood
configuration: each patch covers approximately 200m2, elevation and incidence angle av-
eraged across this area and the influence of just the four nearest neighbours is considered.
It is possible, therefore, that more subtle variation in the nearby terrain may be at play.

20



• Overall,the present study downplays the temporal component, concentrating on the spatial
characteristics of snowmelt. Therefore, it is to be expected that certain discrepancies will
arise due to neglecting the temporal climatological variability across the study catchment.

• Finally, another possible source of discrepancy could be through the simple “binary” as-
sumption, i.e. that patches are either snow or bare ground. Providing each patch with a
continuous variable, e.g. representing the mass of snow covering a particular patch, would
take the model in the direction of predicting how the spatial distribution of meltwater
changes over spring and summer. Therefore, a further extension of the model would be to
move beyond the current assumption of binary state patches.

Regardless of these caveats, we believe that the approach outlined in this paper provides a
promising starting point for understanding the drivers of snow cover dynamics at a fine spatial
scale, within complex topographical environments.
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Figure 8: a Snow pixels classification using a NDSI threshold of 0.4 over a sample area within the Dora del Nivolet
catchment. Snow cover is represented in bright vivid blue. White pixels that protrude from the snow cover mask
indicate real snowy areas, thus suggesting an underestimated snow cover area. b Snow pixels classification using
a NDSI threshold of 0.2 over a sample area within the Dora del Nivolet catchment. A larger amount of real snowy
areas are thereby included in the snow cover mask.

Appendices

A. Calibration of the NDSI threshould

In Fig. 8 we illustrate the improved estimation of snow cover area following the manual
calibration of the NDSI threshold.

B. Tables for symbols and model inputs

In Table 2 we provide a list of symbols/acronyms used during the text. In Table 3 we provide
a list of variables, inputs and parameters for the CA model formulated in Section 2.2.

C. Simulation algorithm

The simulation code is implemented inMatlab. Essentially, in each time step: (i) remaining
snow-covered patches are located and randomly ordered into a sequence (S); (ii) for the first
patch in the sequence, its melt probability is calculated according to Equation (1) and a uniform
random number between 0 and 1 is generated to determine whether melting occurs; (iii) we
proceed through the sequence until all elements in S have been tested; (iv) time is updated
time and we return to (i). Code is available at GitHub and a pseudo-algorithm is provided
below. We note that while parameter ranges were chosen such that simulations would generally
be computable within a reasonable timeframe, certain combinations may push the model into
a regime requiring exorbitant c.p.u. time (via minuscule probability of snowmelt in certain
regions). The maximum number of total time steps for a particular simulation was therefore
capped (here, at 105) to prevent simulation jams of this nature and parameter set combinations
falling foul are excluded.

D. Error analysis of the IEN-model and default λ

We briefly summarise the analysis following the randomised search of parameter space, focusing
on the basic IEN-model. As described in methods, for each sample parameter set the model
is simulated 5 times and errors are computed according to Eq. (5) under varying λ and using
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AC Atmospheric Correction
CA Cellular Automata

DEM Digital Elevation Model
DOY Day Of Year
DTM Digital Terrain Model
E (patch) Elevation

fSCA fractional Snow Cover Area
ESA European Space Agency
I (patch) sun Incidence angle

L1C Level-1C Sentinel-2 product
L2A Level-2A Sentinel-2 product
N (patch) proportion of Nearby snow coverage

NDSI Normalised Difference Snow Index
POI Period of Interest
RCP Representative Concentration Pathways
SCA Snow-Covered Area
SDG Sustainable Development Goals

Table 2: Acronyms and symbols used in the text.

Notation Range/value Interpretation

a(x) [0, 1] incidence angle (rescaled) of patch centred at x
e(x) [0, 1] elevation (rescaled) of patch centred at x
b(x, t) [0, 1] proportion of nearby snow coverage of patch centred at x at time t
S(x, t) {0, 1} state of patch (0 = grass, 1 = snow) centred at x at time t

ρ [2, 10] independent snow melt likelihood
α [0, 9] weighting for impact of incidence angle
β [0, 9] weighting for impact of elevation
γ [0, 9] weighting for impact of nearby snow coverage
p [0, 3] nonlinearity parameter for incidence angle
q [0, 3] nonlinearity parameter for elevation
r [0, 3] nonlinearity parameter for nearby snow coverage
∆x ∼ 14 (metres) patch dimensions
∆t 1 (unitless) time step

Table 3: List of inputs, variables, functions and parameters for the CA model.

Algorithm 1 Pseudo algorithm for model implementation
1: t=0
2: while (continue until stopping condition satisfied) do
3: find the set of snow-covered patches
4: randomly order this set into a sequence S
5: for i=1..size(S) do
6: select patch xi
7: calculate P (xi)
8: If X < P (xi), s(xi) = 0 (X a uniform random number between 0 and 1)
9: end for

10: t = t+∆t
11: end while
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the full set of snow masks in the calibration, i.e. Eq. (6). Fig. 9 charts statistics of this
analysis, where from top to bottom row we vary λ from 1 (only coincidence-based error) to 0
(only interface-based error). The left panels in Fig. 9 chart errors (means ± standard deviation).
Notably, we observe small standard deviations, indicating low variation about the mean error
for each simulation at a specific parameter set and suggesting 5 simulations for each parameter
set is sufficient to obtain a reasonable error estimate. Restricting to the mean errors computed
across the top 1% of parameter sets generates good fitting parameter sets with mean errors lying
within a few percent of each other.

To determine a suitable default value for λ we (i) explore the values of the weighting parameters
across the top 1% parameter sets at each λ, and (ii) examine representative simulation output
from top performing sets at each λ. The weighting parameters for the top 1% sets are shown in
the right hand panels of Fig. 9. Notably, we observe broadly consistent results for λ between
0.5 and 1, indicating a commonality between the parameter sets contributing to the top 1%
sets. For lower λ, however, significantly different weighting parameters are observed, along with
more variance. This is substantiated when examining representative simulation output for top
performing sets, where Fig. 10 shows the simulation output at 59.1% snow coverage, for the
top 5 ranked parameter sets under each λ. Subtle distinctions aside, simulations in the top 3
rows are highly consistent and provide a reasonable match against the snow coverage estimated
from satellite images at an equivalent stage. Low λ, however, generate less consistent results,
with some highly ranked parameter sets producing debatable match against the data (e.g. see
bottom left panel). Accordingly, we use a value of λ = 0.75 that generates both good calibration
against the experimental data set and provides reasonably consistency across simulations with
varying parameters.
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Figure 9: Error analysis for 5000 randomly sampled parameter sets for the basic IEN-model, calibrated against
satellite data according to Eq. (5) with Eq. (6) and a λ = 1, b λ = 0.75, c λ = 0.5, d λ = 0.25, e λ = 0.
(Left column, main axis) Mean error ± standard deviation for the top 50 fitting parameter sets, reported as
the error improvement over the null model; (Left column, inset axis) Mean error for the full 5000 sets. (Right
column) Weighting parameters (α, β, γ) for the top 50 parameter sets, along with their mean values (red dashed)
± standard deviations (blue dotted).
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Figure 10: Representative simulation output for the 5 best parameter sets, selected following the error analysis
reported in Fig. 9, with the ranking according to Eq. (5) for a λ = 1, b λ = 0.75, c λ = 0.5, d λ = 0.25, e λ = 0.
Output shown at the 59.1% snow coverage stage, with the weighting parameters for each simulation indicated by
the bar chart at the top right.
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Figure 11: Representative simulations showing the greater subtlety generated through the extended model for-
mulation, i.e. Eq. (2) with varying (p, q, r). a As p is varied, we see either dispersion or concentration of the
spatial heterogeneity stemming from variable incidence angle (other parameters α = 5, β = γ = q = r = 0,
ρ = 20/3). b As q is varied, we see either dispersion or concentration of the spatial heterogeneity stemming from
variable elevation (other parameters β = 5, α = γ = p = r = 0, ρ = 20/3). c As r is varied, we see a variation
in the characteristic spatial scale of melt patches due to neighborhood dependency (other parameters γ = 5,
α = β = p = q = 0, ρ = 20/3). Note that simulation output corresponds to the stage with 70.3% remaining snow
coverage.
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