At present most alpine glaciers are not in equilibrium with the current climate, as a result they are undergoing a dramatic mass loss. Monitoring glacial variations is crucial to assess the consequences of climate change on the territory. In this work different geomatics techniques are exploited to measure and monitor the Rutor glacier over the years. In this study two different techniques were adopted to generate 3 digital surface models (DSMs): aerial and satellite photogrammetry. Two photogrammetric aerial surveys were carried out: at the end of the hydrological year 2019/20 and at the end of the following hydrological year. Additionally, a very high-resolution satellite stereo pair, acquired by the Pléiades-1A platform in 2017, was processed to assess whether satellite images can be applied to extract the 3D surface of the Rutor glacier. In order to evaluate the Rutor glacier mass-balance throughout the years several reference points were positioned and measured before the 2021 aerial flight. Thanks to the presence of the materialized points the 2021 model is considered as the ‘Reference Model’ against which subsequent models can be compared for glacier analysis. This model was validated by means of a comparison with the authoritative Regional DSM based on LiDAR surveys. In alpine glaciers, the positioning of artificial square cross target in time invariant areas is crucial to enable a multitemporal 4D analysis. The use of very high-resolution satellite imagery allows large areas to be mapped in 3D, but with lower accuracies proportionally decreasing with respect to slope and exposure.
Multi-platform, Multi-scale and Multi-temporal 4D Glacier Monitoring. The Rutor Glacier Case Study / Macelloni, Myrta Maria; Corte, Elisabetta; Ajmar, Andrea; Cina, Alberto; Giulio Tonolo, Fabio; Maschio, Paolo Felice; Pisoni, Isabella Nicole. - 1651:(2022), pp. 392-404. (Intervento presentato al convegno Italian Conference on Geomatics and Geospatial Technologies (ASITA 2022) tenutosi a Genova) [10.1007/978-3-031-17439-1_29].
Multi-platform, Multi-scale and Multi-temporal 4D Glacier Monitoring. The Rutor Glacier Case Study
Macelloni, Myrta Maria;Corte, Elisabetta;Ajmar, Andrea;Cina, Alberto;Giulio Tonolo, Fabio;Maschio, Paolo Felice;Pisoni, Isabella Nicole
2022
Abstract
At present most alpine glaciers are not in equilibrium with the current climate, as a result they are undergoing a dramatic mass loss. Monitoring glacial variations is crucial to assess the consequences of climate change on the territory. In this work different geomatics techniques are exploited to measure and monitor the Rutor glacier over the years. In this study two different techniques were adopted to generate 3 digital surface models (DSMs): aerial and satellite photogrammetry. Two photogrammetric aerial surveys were carried out: at the end of the hydrological year 2019/20 and at the end of the following hydrological year. Additionally, a very high-resolution satellite stereo pair, acquired by the Pléiades-1A platform in 2017, was processed to assess whether satellite images can be applied to extract the 3D surface of the Rutor glacier. In order to evaluate the Rutor glacier mass-balance throughout the years several reference points were positioned and measured before the 2021 aerial flight. Thanks to the presence of the materialized points the 2021 model is considered as the ‘Reference Model’ against which subsequent models can be compared for glacier analysis. This model was validated by means of a comparison with the authoritative Regional DSM based on LiDAR surveys. In alpine glaciers, the positioning of artificial square cross target in time invariant areas is crucial to enable a multitemporal 4D analysis. The use of very high-resolution satellite imagery allows large areas to be mapped in 3D, but with lower accuracies proportionally decreasing with respect to slope and exposure.File | Dimensione | Formato | |
---|---|---|---|
978-3-031-17439-1_29.pdf
accesso aperto
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Creative commons
Dimensione
2.79 MB
Formato
Adobe PDF
|
2.79 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2972330