Thermal spray coatings are widely used to improve the surface properties of materials, in particular the wear and oxidation resistance. Nevertheless, the corrosion resistance is slightly increased due to the fact that this type of coatings present some internal defects (pores, cracks) that allow the corrosive media to penetrate up to the substrate, that undergoes to corrosion degradation. The amount of these defects is strongly influenced by both the deposition technique and the material deposited. The aim of this work is to seal the internal porosities of the thermal spray coatings by the use of both PVD and ALD coatings or the combination of the two. The thermal spray coating analysed in this work is a pure alumina coating, deposited by Air Plasma Spray (APS) technique, that has been sealed with CrN coating, deposited by PVD (Physical Vapour Deposition) technique, and/or TiO2 coatings, deposited by ALD (Atomic Layer Deposition). The substrate used is a common medium C steel. The samples were then characterized in order to determine the microstructure (SEM+EDXS, light microscope) and the chemical composition (Rf-GDOES elemental profiling), that is important to determine the depth of penetration of the PVD and/or ALD coating inside the thermal spray deposit. Afterwards, a detailed electrochemical characterization in 3,5wt% NaCl aqueous solution was performed to verify the efficiency of the sealant treatment. In detail, a monitor in function of the time of the OCP potential was performed up to 24h of immersion time. In addition, potentiodynamic tests were performed using a 3 electrode electrochemical cell (CE: Pt wire, RE: Ag/AgCl). The same tests were then performed on the same samples that present an artificial defect produced by Rf-GDOES. The main goal of these tests is to determine the maximum depth of a defect that can allow the corrosive media to penetrate the thermal spray coating. Preliminary results showed that the use of PVD and ALD coatings as sealants can reduce the permeation of the corrosive media on the substrate.
The use of ALD and PVD coatings as defect sealants to increase the corrosion resistance of thermal spray coatings / Lanzutti, A.; Sordetti, F.; Marin, E.; Andreatta, F.; Carabillo, A.; Querini, M.; Porro, S.; Rondinella, A.; Magnan, M.; Fedrizzi, L.. - ELETTRONICO. - (2022). (Intervento presentato al convegno EUROCORR 2022 - European Corrosion Congress tenutosi a Berlin (Germany) nel 28 Agosto - 1 Settembre 2022).
The use of ALD and PVD coatings as defect sealants to increase the corrosion resistance of thermal spray coatings
S. Porro;
2022
Abstract
Thermal spray coatings are widely used to improve the surface properties of materials, in particular the wear and oxidation resistance. Nevertheless, the corrosion resistance is slightly increased due to the fact that this type of coatings present some internal defects (pores, cracks) that allow the corrosive media to penetrate up to the substrate, that undergoes to corrosion degradation. The amount of these defects is strongly influenced by both the deposition technique and the material deposited. The aim of this work is to seal the internal porosities of the thermal spray coatings by the use of both PVD and ALD coatings or the combination of the two. The thermal spray coating analysed in this work is a pure alumina coating, deposited by Air Plasma Spray (APS) technique, that has been sealed with CrN coating, deposited by PVD (Physical Vapour Deposition) technique, and/or TiO2 coatings, deposited by ALD (Atomic Layer Deposition). The substrate used is a common medium C steel. The samples were then characterized in order to determine the microstructure (SEM+EDXS, light microscope) and the chemical composition (Rf-GDOES elemental profiling), that is important to determine the depth of penetration of the PVD and/or ALD coating inside the thermal spray deposit. Afterwards, a detailed electrochemical characterization in 3,5wt% NaCl aqueous solution was performed to verify the efficiency of the sealant treatment. In detail, a monitor in function of the time of the OCP potential was performed up to 24h of immersion time. In addition, potentiodynamic tests were performed using a 3 electrode electrochemical cell (CE: Pt wire, RE: Ag/AgCl). The same tests were then performed on the same samples that present an artificial defect produced by Rf-GDOES. The main goal of these tests is to determine the maximum depth of a defect that can allow the corrosive media to penetrate the thermal spray coating. Preliminary results showed that the use of PVD and ALD coatings as sealants can reduce the permeation of the corrosive media on the substrate.File | Dimensione | Formato | |
---|---|---|---|
Lanzutti presentazione Eurocorr 2022.pdf
non disponibili
Descrizione: Materiale presentato al congresso
Tipologia:
Altro materiale allegato
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
3.4 MB
Formato
Adobe PDF
|
3.4 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
EUROCORR 2022-Prgr_final.pdf
accesso aperto
Descrizione: Programma congresso
Tipologia:
Altro materiale allegato
Licenza:
PUBBLICO - Tutti i diritti riservati
Dimensione
7.26 MB
Formato
Adobe PDF
|
7.26 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2972261