This paper summarizes our latest results of integrated all-to-all optical interconnect systems using compact, low-loss silicon nitride (SiN) arrayed waveguide grating router (AWGR) through AIM photonics' multiple-project-wafer services. In particular, we have designed, taped out, and initially characterized a chip-scale silicon photonic low-latency interconnect optical network switch (Si-LIONS) system with an 8 × 8 200 GHz spacing cyclic SiN AWGR, 64 microdisk modulators, and 64 on-chip germanium photodector (PD). The 8 × 8 SiN AWGR in design has a measured insertion loss of 1.8 dB and a crosstalk of -13 dB, with a footprint of 1.3 mm × 0.9 mm. We measured an error-free performance of the microdisk modulator at 10 Gb/s upon 1Vpp voltage swing. We demonstrated wavelength routing with error-free data transmission using the on-chip modulator, SiN AWGR, and an external PD. We have designed and taped out the optical interposer version of the all-to-all system using SiN waveguides and low-loss chip-to-interposer couplers. Finally, we illustrate our preliminary designs and results of 16 × 16 and 32 × 32 SiN AWGRs, and discuss the possibility of scaling beyond 1024 × 1024 all-to-all interconnections with reduced number of wavelengths (e.g., 64) using the Thin-CLOS architecture.

Foundry-Enabled Scalable All-to-All Optical Interconnects Using Silicon Nitride Arrayed Waveguide Router Interposers and Silicon Photonic Transceivers / Zhang, Y; Xiao, X; Zhang, K; Li, S; Samanta, A; Zhang, Y; Shang, K; Proietti, R; Okamoto, K; Yoo, S. J. B.. - In: IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS. - ISSN 1077-260X. - STAMPA. - 25:5(2019), pp. 1-9. [10.1109/JSTQE.2019.2910415]

Foundry-Enabled Scalable All-to-All Optical Interconnects Using Silicon Nitride Arrayed Waveguide Router Interposers and Silicon Photonic Transceivers

Proietti R;
2019

Abstract

This paper summarizes our latest results of integrated all-to-all optical interconnect systems using compact, low-loss silicon nitride (SiN) arrayed waveguide grating router (AWGR) through AIM photonics' multiple-project-wafer services. In particular, we have designed, taped out, and initially characterized a chip-scale silicon photonic low-latency interconnect optical network switch (Si-LIONS) system with an 8 × 8 200 GHz spacing cyclic SiN AWGR, 64 microdisk modulators, and 64 on-chip germanium photodector (PD). The 8 × 8 SiN AWGR in design has a measured insertion loss of 1.8 dB and a crosstalk of -13 dB, with a footprint of 1.3 mm × 0.9 mm. We measured an error-free performance of the microdisk modulator at 10 Gb/s upon 1Vpp voltage swing. We demonstrated wavelength routing with error-free data transmission using the on-chip modulator, SiN AWGR, and an external PD. We have designed and taped out the optical interposer version of the all-to-all system using SiN waveguides and low-loss chip-to-interposer couplers. Finally, we illustrate our preliminary designs and results of 16 × 16 and 32 × 32 SiN AWGRs, and discuss the possibility of scaling beyond 1024 × 1024 all-to-all interconnections with reduced number of wavelengths (e.g., 64) using the Thin-CLOS architecture.
File in questo prodotto:
File Dimensione Formato  
Foundry-Enabled_Scalable_All-to-All_Optical_Interconnects_Using_Silicon_Nitride_Arrayed_Waveguide_Router_Interposers_and_Silicon_Photonic_Transceivers.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 7.63 MB
Formato Adobe PDF
7.63 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
JSTQE2910415.pdf

accesso aperto

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 2.08 MB
Formato Adobe PDF
2.08 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2972259