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Abstract—This paper summarizes our latest results of 

integrated all-to-all optical interconnect systems using compact, 

low-loss silicon nitride (SiN) arrayed waveguide grating router 

(AWGR) through AIM photonics’ multiple-project-wafer (MPW) 

services. In particular, we have designed, taped out and initially 

characterized a chip-scale silicon photonic low-latency 

interconnect optical network switch (Si-LIONS) system with an 

8×8 200GHz spacing cyclic SiN AWGR, 64 microdisk modulators 

and 64 on-chip germanium photodector (PD). The 8×8 SiN AWGR 

in design has a measured insertion loss of 1.8 dB and a crosstalk of 

-13 dB, with a footprint of 1.3 mm × 0.9 mm. We measured an 

error-free performance of the microdisk modulator at 10 Gb/s 

upon 1Vpp voltage swing. We demonstrated wavelength routing 

with error-free data transmission using the on-chip modulator, 

SiN AWGR and an external PD.  We have designed and taped out 

the optical interposer version of the all-to-all system using SiN 

waveguides and low-loss chip-to-interposer couplers. Lastly, we 

illustrate our preliminary designs and results of 16×16 and 32×32 

SiN AWGRs, and discuss the possibility of scaling beyond 

1024×1024 all-to-all interconnections with reduced number of 

wavelengths (e.g. 64) using the Thin-CLOS architecture. 

 
Index Terms—Photonic integrated circuits, silicon photonics, 

arrayed waveguide grating router, optical interposer, electronic-

photonic integration.  

 

I. INTRODUCTION 

s high-performance computing (HPC) platforms with 

multi-core processors are being deployed to sustain the 

ever-growing data demands, optical interconnects are attracting 

applications in networks on chips (NoC) systems owing to their 

superior performance in terms of low latency, high  throughput, 

and high energy efficiency [1-3]. Arrayed waveguide grating 

router (AWGR)-based all-to-all optical interconnects [4, 5] are 

particularly attractive among many existing optical switching 

and routing solutions [6, 7] as they enable contentionless non-
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blocking interconnects with a simple interconnection topology 

[8]. 

Integrated photonics, particularly silicon photonics [9-15], 

offers an attractive platform for such AWGR-based all-to-all 

interconnect systems with advantages of: (1) significant 

reductions in size, weight, and power (SWaP) compared to the 

standalone devices with fiber connections [16]; (2) and 

facilitating high-radix all-to-all interconnections. Recent 

demonstrations showed silicon photonic AWGRs with up to 

512×512 [17] and a 8×8 Silicon Photonic Low-Latency 

Interconnect Optical Network Switch (Si-LIONS) with an 

integrated silicon photonic AWGR and silicon photonic (SiPh) 

transceivers [18]. Si-LIONS will also allow close integration 

with silicon photonic (SiPh) transceivers [18], Complementary-

Metal-Oxide-Semiconductor (CMOS) ICs [19], and 

nanoelectronics [20]. 

Silicon nitride (SiN)/SiO2 waveguides, compared to 

silicon/SiO2 waveguides, offer lower index contrast and lower 

thermo-optical coefficient [21]. Therefore, they are less 

sensitive to fabrication imperfections and environmental 

temperature variations, thus they are more desirable for low-

loss [22, 23] and high port count AWGRs.   Fig. 1 schematically 

illustrates [8] an all-to-all optically interconnected network 

involving multi-socket compute nodes where the compute 

nodes including the electronic IC cores integrated with silicon 

photonic transceivers and an optical interposer including a SiN 

AWGR.  An optical frequency comb (OFC) laser will feed in N 

number of wavelengths from the edge of the optical interposer. 

Laser inputs will then be amplified by a semiconductor optical 

amplifier (SOA) and equally split into SiPh transmitters on N 

computing nodes. Modulated signals then are transmitted to the 

desired node through the wavelength routing by SiN AWGR 

and detected by the wavelength selective filter and on-chip PDs. 

The expanded view of Fig. 1 illustrates an integration scheme 
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of the electronic ICs and silicon photonics, and Sec. III B will 

discuss details of this later. 

In this paper, we design and tape-out a Si-LIONS chip which 

monolithically integrates a low-crosstalk 8×8 200-GHz cyclic 

silicon nitride (SiN) AWGR, SiPh transmitters, and receivers. 

We further experimentally demonstrate 10 Gb/s OOK 

transmission between different input and output ports of the Si-

LIONS chip. The remainder of the paper is organized as follows. 

Section II details the design and characterization of our chip-

scale Si-LIONS system using an 8×8 200 GHz spacing cyclic 

SiN AWGR and on-chip modulators and PDs. Section III shows 

our design and integration plan of the SiN AWGR, SiPh 

transceiver modules, and electronic driver ICs on an optical 

interposer. Sect IV presents our initial designs and results on 

16×16 and 32×32 SiN AWGRs and discuss the scalability 

towards large port count. Section V concludes the paper. 

II. CHIP-SCALE INTEGRATED SI-LIONS SYSTEM USING 8×8 

SIN AWGR 

Here we detail our design of a chip version Si-LIONS 

system, characterization of individual components, and 

demonstration of error-free wavelength routing. Fig. 2 (a) 

shows the microscope image of the 8×8 Si-LIONS chip which 

was laid out using AIM Photonic process developed kit (PDK)  

2.0 and fabricated through an AIM Photonic multi-project-

wafer (MPW) run. An eight-wavelength laser emission was 

coupled into the chip through an edge coupler from the left side 

of the chip and then split equally into the 8 input waveguides. 

For each input ports of the 8×8 SiN AWGR, there is an array of 

 
Fig. 2.  (a) Optical microscope picture of the 8 x 8 Si-LIONS system with SiN AWGR and SiPh transmitters and receivers. Zoom-in pictures of (b) a silicon 

microdisk modulator, (c) the 8 x 8 SiN AWGR and (d) a silicon microring filter and Ge photodector pair. 

 
Fig. 1 Schematic of an all-to-all optical interconnected electronic ICs using SiN AWGR 
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8 microdisk modulators as SiPh transmitters and at each output 

ports, there is an array of 8 microring add-drop filters and 

photodetectors as the SiPh receiver. The microdisk modulator 

array and add-drop filters array are designed to have the high-

speed metal pads arrangement and spacing to be compatible 

with a 65nm technology node electronic driver ICs [24]. A 

90:10 coupler is used to monitor the resonance alignment of the 

modulators at each of the AWGR’s input ports.  

Figs. 2 (b) – (d) show the zoom-in photographs of a silicon 

microdisk modulator, the 8×8 SiN AWGR and a silicon 

microring filer and Ge PD pair. The microdisk modulator has a 

diameter less than 10 m. Therefore, the capacitance is only a 

few fF, which helps to reduce the power consumption. The 

designed 8×8 SiN AWGR has a footprint of 1.3 mm × 0.9 mm. 

The channel spacing is designed to be 200 GHz and FSR is 

designed to 1.6 THz for cyclic wavelength routing 

performance. The add-drop filter and Ge PD pair works as a 

wavelength selective receiver. 

A. SiN AWGR Characterization 

We measured the transmission spectra of the SiN AWGR 

after diced off 1-to-8 splitters and modulator arrays. The input 

port end facets are polished after the dicing. Figs. 3 (a) and (b) 

show the measured transmission spectra of the 8×8 SiN AWGR 

from central input and side input. Measured spectra are 

normalized to the wrapped around waveguide with similar 

length. We extract a 1.8dB insertion loss and a -13dB crosstalk 

for the central input. There is an additional ~1dB loss for the 

side input. We attribute the relatively high crosstalk to the 

unoptimized SiN AWGR design. In our previous design with 

narrower input/output waveguide spacing, we were able to 

achieve -18 dB crosstalk [25]. The sharp dips in the measured 

spectra originate from the add-drop filters at the output ports. 

 
Fig. 4. Measured transmission spectra of (a) a 4-channel modulator array 

with different resonance wavelength and (b) a 9-channel modulator 

array with same resonance wavelength. 

 
Fig. 6. Measured transmission spectra of a microdisk modulator upon 

different bias voltage. Inset: 10 Gb/s eye diagram of a modulator upon 

1Vpp swing. 

 

 
Fig. 3. Measured transmission spectra of the 8 x 8 SiN from (a) central 

waveguide input (input waveguide 5) and (b) side waveguide input 

(input waveguide 1). 

 
 Fig. 5. (a) Measured transmission spectra of a microdisk modulator 

upon different heating power and (b) Measured and fitted heater. 
efficiency. 
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B. Microdisk Modulator Characterization 

As shown in Fig. 2 (a), every four modulators in the 

modulator array are grouped together to be driven by a 65nm 4-

channel electronic IC. Fig. 4 (a) shows the measured 

transmission spectra of such modulator groups from the test 

structure. The resonance wavelengths are designed to have 800 

GHz spacing. We studied the resonance wavelength uniformity 

on a single die using a cascaded nine microdisk modulator 

structure. All nine modulators are designed to have the same 

resonance wavelength. Fig. 4 (b) shows the measured 

transmission spectra from the nine-modulator array. We 

observed a maximum wavelength deviation of ±1 nm (125 

GHz). Therefore, resonance wavelength tuning is required to 

align the modulator operating wavelength with the SiN AWGR 

channel passband. 

 The modulator element from the AIM photonic foundry’s 

PDK has a built-in thermal tuner. Fig. 5 (a) shows the resonance 

red-shift upon different heating power. We extract a tuning 

efficiency of 0.38 nm/mW (Fig. 5 (b)), corresponds to 65 mW 

for tuning across a full free-spectral-range (FSR). Further 

reductions in this thermo-optical tuning power consumption can 

rise from selectively etching the oxide layer underneath [26].  

Fig. 6 shows the measured electro-optical response of the 

modulator upon different bias voltage on the p-n diode. With 

1V swing (-0.6 V to 0.4 V), the modulator reveals an extinction 

ratio (ER) > 20 dB with an insertion loss < 3 dB. The inset 

shows the 10 Gb/s eye diagram from the modulator with 1Vpp. 

Current modulation speed is limited by our pattern generator 

and according to the PDK performance [27], it can operate at a 

data rate up to 40 Gb/s. 

C. Routing Experiments 

We demonstrated proof-of-concept wavelength routing 

interconnects using a setup shown in Fig. 7. A polarization 

controller (PC) is used to ensure TE polarization input and a 

pair of lensed fibers are used for coupling light into and out of 

the Si-LIONS chip. The input light of the chip is modulated by 

one of the on-chip microdisk modulator and routed by the 

AWGR. The optical signals at the AWGR output is amplified 

by another EDFA and detected by an external PD. In this 

experiment we did not use the on-chip Ge PD due to the lack of 

external transimpedance amplifier (TIA). Our new electronic 

driver ICs with on-chip TIAs will become available in early 

 
Fig. 7.  Experimental setup for the routing demonstration on the fabricated chip. 

 

 
Fig. 8.  Simulated eye diagrams for (a) electrical input and (b) Ge PD 

output. Measured eye diagrams for (c) input 5 to output 5, (d) input 5 to 
output 1, (e) input 1 to output 1 and (f) input 1 to output 5. (g) Measured 

BER curves as a function of received power. 
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January 2019, their integration 2.5D and 3D integration of such 

driver ICs and SiPh PICs are in progress for all-to-all 

interconnect demonstrations. An RF probe array is used to 

provide DC signals to the heaters of the microdisk for resonance 

alignment and inject RF signals to the diodes of the microdisk 

for modulation. Resonance alignment is monitored through the 

top 90/10 coupler coupled to an optical spectrum analyzer 

(OSA). The eye diagram is measured by using an oscilloscope. 

Figs. 8  (a) and (b) shows the simulated eye-diagram from 

the electrical input and from on-chip Ge PD using our Verilog-

A based models [28]. The output eye diagram is mainly 

deteriorated by the coherent crosstalk from the AWGR 

passband. Figs. 8 (c) - (f) show the eye diagrams of 10 Gb/s 

OOK transmission from input port 5 to output port 5, input port 

5 to output port 1, input port 1 to output port 1 and input port 1 

to output port 5. The modulation signal is a 231-1 PRBS 

produced by a pattern generator. The bias voltage is optimized 

to 0.9 V and the peak-to-peak voltage is set as 1V. Fig. 8 (e) 

shows the measured BER curves of all four paths. Error-free 

operations are achieved with received power larger than -10 

dBm. BER curves from the on-chip Ge PD will be measured 

after driver ICs integration. 

III. 2.5D INTEGRATION ON AN OPTICAL INTERPOSER 

As shown in Fig. 1, an optical interposer is necessary to 

further extend chip-to-chip optical communications to all-to-all 

interconnects. In this section, we reveal our efforts on low-loss, 

alignment tolerant SiPh transceiver chip-to-interposer optical 

coupling, initial tapeout through AIM photonic passive 

interposer MPW run and future integration schemes using 

active optical interposer. 

A. SiPh Transceiver Dies-to-interposer Optical Coupling 

Conventional electrical packaging using flip-chip bonding 

typically has a placement error of ±0.5 m [29], comparable to 

a typical silicon waveguide width, and misalignment could 

significantly increase after the annealing. Optical coupling 

could be deteriorated with such misalignment; therefore, it is 

critical to develop a low-loss, alignment-tolerant coupling 

method between the SiPh transceiver chip. Following our 

previous work [30], we have designed and fabricated SiN-based 

evanescent coupler with an overlapping length of 500 m and 

a taper width of 250 nm (limited by the lithography tool).  

We fabricated a simple straight waveguide structures with 

trenches to extract the coupling loss from interposer to SiPh 

chip. We then performed an Au-to-Au flip-chip bonding for the 

SiPh chip to interposer packaging (Fig. 9 (a)). Fig. 9 (b) shows 

measured coupling loss of the evanescent coupler upon 

different misalignment. We observed a minimum 0.41 dB loss 

from the coupler with 3dB tolerance to be ~±3 m [31]. We 

attribute the loss variation within the tolerance band to the 

unwanted dust in the coupler region. Such low-loss and 

misalignment tolerant coupling methods developed here can be 

transferred to a foundry to enable efficient coupling from the 

SiPh die to optical interposer in a manufacturing environment. 

 
Fig. 9.  (a) Photo of flip-chip bonding. The small figure in the right 

bottom illustrates the alignment of flip-chip bonding. (b) Experimental 

results of SiN to SiN inter-chip coupler. 

 

 
Fig. 10. (a) Schematic of the 8 × 8 SiN AWGR-based all-to-all system demonstrator on an optical interposer submitted to AIM photonics 2018 June MPW 

run. Optical microscope pictures of a SiPh (b) transmitter die and (c) receiver die to be bonded on the optical interposer. 
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B. Initial Foundry Tapeout for Optical Interposer Based All-

to-all Interconnects Demonstration and Future Integration on 

Active Optical Interposer 

As a first step for optical interposer and SiN AWGR enabled 

all-to-all interconnection demonstration, we have taped-out an 

8 × 8 system demonstrator using AIM photonic passive optical 

interposer and full SiPh MPW run. Fig. 10 shows the layout 

layout of the optical interposer comprising an 8 × 8 SiN AWGR 

integrated with SiPh transmitter and receiver dies. The 

transmitter die contains total 64 modulators on 8 input 

waveguides and the receiver die contains total 64 filter and Ge 

PD pair on 8 output waveguides. They will be both bonded on 

top of the optical interposer. The OFC laser signal will be fed 

into the transmitter chip from the fiber trench on top of the 

interposer. Given the footprint constraint, transmitter and 

receiver CMOS driver ICs will not be on the interposer. They 

will be wire-bonded from the left and right edges of the 

interposer to drive total 8 modulators and 8 PDs for a 1-to-all 

interconnection demonstration. We estimate the power 

efficiency of the entire system to be 3.2 pJ/bit, which can be 

decomposed into a laser power consumption of 2.4 pJ/bit, a Tx 

IC (including the modulator heating) power consumption of 0.4 

pJ/bit and a Rx IC (including the drop filter heating) power 

consumption of 0.4 pJ/bit. 

The planned release of active silicon photonic optical 

interposer from AIM photonics in 2019 will greatly reduce the 

complexity and footprint needed for packaging and integration 

with CMOS driver and electrical ICs (e.g. GPU dies) to be 

interconnected. Fig. 11 illustrates a potential scheme for such 

integration. With the active SiPh components embedded in the 

optical interposer, CMOS drivers can directly connect to the 

modulators and PDs. This reduces the length of high-speed 

traces to below 10 m [32], far shorter than the passive optical 

interposer case. The optical interposer can then be integrated 

with the electrical ICs/dies to be interconnected through an 

organic interposer using the backside C4 bumps. Powering of 

the whole system will be provided from the PCB underneath. 

IV. SCALING TO LARGE PORT COUNTS 

 For HPC applications, massive parallelism is preferred to 

connect thousands of GPUs, CPUs, FPGAs and etc. in flexible 

and scalable architectures. This requires a large port count 

possibly exceeding 1000 × 1000. In this session, we present our 

initial design and characterization results of 16×16 and 32×32 

SiN AWGRs and discuss the port count scalability using the 

thin-CLOS architecture. 

 
 Fig. 11.  Schematic of single node electronic-photonic integration using 

an active optical interposer 

 

 
 Fig. 13.  (a) Optical microscope picture of a 32×32 SiN AWGR. (b) 

Measured transmission spectra of a 32×32 SiN AWGR from central 

input. 

 

 
 Fig. 12.  (a) Optical microscope picture of a 16×16 SiN AWGR. (b) 

Measured transmission spectra of a 16×16 SiN AWGR from central 
input. 
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A. Initial Designs and Results on 16×16 and 32×32 SiN 

AWGR 

In the same MPW run, we have taped-out 16×16 and 32×32 

SiN AWGR to explore the scalability of our AWGR devices. 

Fig. 12 (a) and Fig. 13 (a) shows the optical microscope images 

of the 16×16 and 32×32 SiN AWGR with a footprint of 2.4 mm 

× 1.6 mm and 4.6 mm × 2.9 mm. Fig. 12 (b) and Fig. 13 (b) 

shows the measured transmission spectra of the 16×16 and 

32×32 SiN AWGR. We extracted an insertion loss of 5 dB and 

a crosstalk of -10 dB for the 16×16 SiN AWGR and an insertion 

loss of 2 dB and a crosstalk of -10 dB for the 32×32 SiN 

AWGR. We attribute the relatively high crosstalk partly due to 

the phase error induced from the fabrication imperfections 

(sidewall roughness, film thickness variation) in the relatively 

large device region. We believe this can be reduced using 

improved lithography method from foundry [33]. 

B. Thin-CLOS Architecture for Port Count Scaling   

There are multiple limiting factors prevent our single SiN 

AWGR system from being practically deployed in a large scale 

(≥32). Other than the fabrication imperfection induced the 

crosstalk discussed above, such imperfection also affects the 

channel spacing and passband of the fabricated SiN AWGR 

devices. Second, As the total number of wavelength channel 

grows, coherent in-band crosstalk increases significantly [34]. 

This can deteriorate the BER of the optical links. Third, using 

the same spectral range with increased number of wavelengths 

would require a narrow channel spacing. This increases the total 

AWGR size and demands more complex OFC laser sources. To 

achieve large port count, it would be desirable to use many 

smaller port count AWGRs and combined them to provide the 

same interconnectivity offered by a single larger AWGR, with 

a price of increased waveguide routings to connect between the 

small AWGRs [16]. 

In our previous work [16], we have demonstrated a 64×64 

all-to-all interconnect systems in Thin-CLOS architecture using 

four standalone 32×32 silica AWGRs (Fig. 14 (a)). The system 

is packed in 1U rack (Fig. 14 (b)) with a power consumption of 

10W. It is possible to build a miniature system on-chip with 

100× reduction in size and weight using the SiN AWGRs and 

multilayer SiN waveguides [25] for routing, as shown in Fig. 

14 (c). The overall size of that chip can fit into a 22 mm × 22 

mm area, given a 32×32 SiN AWGR size of 4.6 mm × 2.9 mm. 

With recent developments, such multilayer SiN process 

offerings have become available in multiple foundries [27, 35], 

and foundry-based manufacturing based Thin-CLOS based 

large-scale optical interconnects can become possible. 

V. SUMMARY 

In this paper, we present and discuss our SiN AWGR-based 

integrated all-to-all optical interconnect systems through AIM 

Photonics foundry’s active SiPh and passive optical interposer 

MPW runs. We have designed, taped-out and characterized a 

chip-scale Si-LIONS system with an 8×8 200GHz spacing 

cyclic SiN AWGR and SiPh modulators and PDs. We 

demonstrated wavelength routing with error-free data 

transmission using the on-chip modulator, the on-chip SiN 

AWGR, an off-chip laser, and an off-chip PD.  New CMOS 

driver IC tape-out is complete and 2.5D and 3D integration of 

the electronic ICs with the silicon photonic transceivers are in 

progress.  We have designed and taped-out the optical 

interposer version of the all-to-all system using SiN AWGRs 

and low-loss chip-to-interposer couplers. Here, we have 

designed and characterized a 16×16 and 32×32 SiN AWGRs.  

Utilizing such AWGRs, scaling to a high-radix all-to-all 

interconnect interposer is possible using the Thin-CLOS 

architecture and multilayer SiN waveguides.  
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 Fig. 14.  (a) Schematic of a 64×64 all-to-all interconnect using four 

32×32 silica AWGR in Thin-CLOS architecture. (b) Picture of the Thin-

CLOS system in 1U rack. (c) Integrated Thin-CLOS architecture 

achieved with three layers of SiN. 
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