This paper presents the experimental validation of the detection capabilities of a low complexity wearable system designed for the imaging-based detection of brain stroke. The system approaches the electromagnetic inverse problem via a 3-D imaging algorithm based on the Born approximation and the Truncated Singular Value Decomposition (TSVD). For testing, flexible antennas with custom-made coupling-medium are prototyped and assessed in mimicked hemorrhagic and ischemic stroke conditions. The experiment emulates the clinical scenario using a single-tissue anthropomorphic head phantom and strokes with both 20 cm 3 and 60 cm 3 ellipsoid targets. The imaging kernel is computed via full-wave simulation of a virtual twin model. The results demonstrate the capabilities for detecting and estimating the stroke-affected area.

Wearable Microwave Imaging System for Brain Stroke Imaging / Rodriguez-Duarte, D. O.; Origlia, C.; Tobon Vasquez, J. A.; Scapaticci, R.; Crocco, L.; Vipiana, F.. - ELETTRONICO. - (2022), pp. 1716-1717. (Intervento presentato al convegno 2022 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (AP-S/URSI) tenutosi a Denver, CO, USA nel 10-15 July 2022) [10.1109/AP-S/USNC-URSI47032.2022.9887338].

Wearable Microwave Imaging System for Brain Stroke Imaging

Rodriguez-Duarte, D. O.;Origlia, C.;Tobon Vasquez, J. A.;Vipiana, F.
2022

Abstract

This paper presents the experimental validation of the detection capabilities of a low complexity wearable system designed for the imaging-based detection of brain stroke. The system approaches the electromagnetic inverse problem via a 3-D imaging algorithm based on the Born approximation and the Truncated Singular Value Decomposition (TSVD). For testing, flexible antennas with custom-made coupling-medium are prototyped and assessed in mimicked hemorrhagic and ischemic stroke conditions. The experiment emulates the clinical scenario using a single-tissue anthropomorphic head phantom and strokes with both 20 cm 3 and 60 cm 3 ellipsoid targets. The imaging kernel is computed via full-wave simulation of a virtual twin model. The results demonstrate the capabilities for detecting and estimating the stroke-affected area.
2022
978-1-6654-9658-2
File in questo prodotto:
File Dimensione Formato  
AP_S2022_WeareableSystem_DR_CO.pdf

accesso aperto

Descrizione: Main file
Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 3.06 MB
Formato Adobe PDF
3.06 MB Adobe PDF Visualizza/Apri
Rodriguez-Wearable.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 3.77 MB
Formato Adobe PDF
3.77 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2971980