Vertical-cavity surface-emitting lasers are promising light sources for sensing and spectroscopy applications in the midinfrared 3 - 4 μm spectral region. A type-II superlattice active region is used for carrier injection and confinement, while a buried tunnel junction defines a current aperture, decreasing the series resistivity. Highly nanostructured to optimize device performance, mid-infrared VCSELs pose modeling challenges beyond semiclassical approaches. We propose a quantum-corrected semiclassical approach to device design and optimization, complementing a drift-diffusion solver with a nonequilibrium Green’s function description of band-to-band tunneling in the buried tunnel junction, and a local density of states computed from the solution of the Schrödinger equation in the superlattice active region.

Modeling carrier transport in mid-infrared VCSELs with type-II superlattices and tunnel junctions / Torrelli, Valerio; Montoya, Jesus Alberto Gonzalez; Tibaldi, Alberto; Debernardi, Pierluigi; Simaz, Andrea; Belkin, Mikhail A.; Goano, Michele; Bertazzi, Francesco. - ELETTRONICO. - 2022 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD):(2022), pp. 55-56. (Intervento presentato al convegno 2022 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD) tenutosi a Torino, Italia nel 12-16 settembre 2022) [10.1109/NUSOD54938.2022.9894782].

Modeling carrier transport in mid-infrared VCSELs with type-II superlattices and tunnel junctions

Torrelli, Valerio;Montoya, Jesus Alberto Gonzalez;Tibaldi, Alberto;Goano, Michele;Bertazzi, Francesco
2022

Abstract

Vertical-cavity surface-emitting lasers are promising light sources for sensing and spectroscopy applications in the midinfrared 3 - 4 μm spectral region. A type-II superlattice active region is used for carrier injection and confinement, while a buried tunnel junction defines a current aperture, decreasing the series resistivity. Highly nanostructured to optimize device performance, mid-infrared VCSELs pose modeling challenges beyond semiclassical approaches. We propose a quantum-corrected semiclassical approach to device design and optimization, complementing a drift-diffusion solver with a nonequilibrium Green’s function description of band-to-band tunneling in the buried tunnel junction, and a local density of states computed from the solution of the Schrödinger equation in the superlattice active region.
2022
978-1-6654-7898-4
978-1-6654-7899-1
File in questo prodotto:
File Dimensione Formato  
2022Torrelli_NUSOD.POSTPRINT.pdf

accesso aperto

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 366.73 kB
Formato Adobe PDF
366.73 kB Adobe PDF Visualizza/Apri
2022Torrelli_NUSOD - Modeling carrier transport in mid-infrared VCSELs.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 457.46 kB
Formato Adobe PDF
457.46 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2971773