Vertical-cavity surface-emitting lasers are promising light sources for sensing and spectroscopy applications in the midinfrared 3 - 4 μm spectral region. A type-II superlattice active region is used for carrier injection and confinement, while a buried tunnel junction defines a current aperture, decreasing the series resistivity. Highly nanostructured to optimize device performance, mid-infrared VCSELs pose modeling challenges beyond semiclassical approaches. We propose a quantum-corrected semiclassical approach to device design and optimization, complementing a drift-diffusion solver with a nonequilibrium Green’s function description of band-to-band tunneling in the buried tunnel junction, and a local density of states computed from the solution of the Schrödinger equation in the superlattice active region.
Modeling carrier transport in mid-infrared VCSELs with type-II superlattices and tunnel junctions / Torrelli, Valerio; Montoya, Jesus Alberto Gonzalez; Tibaldi, Alberto; Debernardi, Pierluigi; Simaz, Andrea; Belkin, Mikhail A.; Goano, Michele; Bertazzi, Francesco. - ELETTRONICO. - 2022 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD):(2022), pp. 55-56. (Intervento presentato al convegno 2022 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD) tenutosi a Torino, Italia nel 12-16 settembre 2022) [10.1109/NUSOD54938.2022.9894782].
Modeling carrier transport in mid-infrared VCSELs with type-II superlattices and tunnel junctions
Torrelli, Valerio;Montoya, Jesus Alberto Gonzalez;Tibaldi, Alberto;Goano, Michele;Bertazzi, Francesco
2022
Abstract
Vertical-cavity surface-emitting lasers are promising light sources for sensing and spectroscopy applications in the midinfrared 3 - 4 μm spectral region. A type-II superlattice active region is used for carrier injection and confinement, while a buried tunnel junction defines a current aperture, decreasing the series resistivity. Highly nanostructured to optimize device performance, mid-infrared VCSELs pose modeling challenges beyond semiclassical approaches. We propose a quantum-corrected semiclassical approach to device design and optimization, complementing a drift-diffusion solver with a nonequilibrium Green’s function description of band-to-band tunneling in the buried tunnel junction, and a local density of states computed from the solution of the Schrödinger equation in the superlattice active region.File | Dimensione | Formato | |
---|---|---|---|
2022Torrelli_NUSOD.POSTPRINT.pdf
accesso aperto
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
PUBBLICO - Tutti i diritti riservati
Dimensione
366.73 kB
Formato
Adobe PDF
|
366.73 kB | Adobe PDF | Visualizza/Apri |
2022Torrelli_NUSOD - Modeling carrier transport in mid-infrared VCSELs.pdf
non disponibili
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
457.46 kB
Formato
Adobe PDF
|
457.46 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2971773