The goal in the standard reinforcement learning problem is to find a policy that optimizes the expected return. However, such an objective is not adequate in a lot of real-life applications, like finance, where controlling the uncertainty of the outcome is imperative. The mean-volatility objective penalizes, through a tunable parameter, policies with high variance of the per-step reward. An interesting property of this objective is that it admits simple linear Bellman equations that resemble, up to a reward transformation, those of the risk-neutral case. However, the required reward transformation is policy-dependent, and requires the (usually unknown) expected return of the used policy. In this work, we propose two general methods for policy evaluation under the mean-volatility objective: the direct method and the factored method. We then extend recent results for finite sample analysis in the risk-neutral actor-critic setting to the mean-volatility case. Our analysis shows that the sample complexity to attain an ϵ-accurate stationary point is the same as that of the risk-neutral version, using either policy evaluation method for training the critic. Finally, we carry out experiments to test the proposed methods in a simple environment that exhibits some trade-off between optimality, in expectation, and uncertainty of outcome.
Finite Sample Analysis of Mean-Volatility Actor-Critic for Risk-Averse Reinforcement Learning / Eldowa, Khaled; Bisi, Lorenzo; Restelli, Marcello. - ELETTRONICO. - 151:(2022), pp. 10028-10066. (Intervento presentato al convegno The 25th International Conference on Artificial Intelligence and Statistics (AISTATS 2022)).
Finite Sample Analysis of Mean-Volatility Actor-Critic for Risk-Averse Reinforcement Learning
Eldowa, Khaled;
2022
Abstract
The goal in the standard reinforcement learning problem is to find a policy that optimizes the expected return. However, such an objective is not adequate in a lot of real-life applications, like finance, where controlling the uncertainty of the outcome is imperative. The mean-volatility objective penalizes, through a tunable parameter, policies with high variance of the per-step reward. An interesting property of this objective is that it admits simple linear Bellman equations that resemble, up to a reward transformation, those of the risk-neutral case. However, the required reward transformation is policy-dependent, and requires the (usually unknown) expected return of the used policy. In this work, we propose two general methods for policy evaluation under the mean-volatility objective: the direct method and the factored method. We then extend recent results for finite sample analysis in the risk-neutral actor-critic setting to the mean-volatility case. Our analysis shows that the sample complexity to attain an ϵ-accurate stationary point is the same as that of the risk-neutral version, using either policy evaluation method for training the critic. Finally, we carry out experiments to test the proposed methods in a simple environment that exhibits some trade-off between optimality, in expectation, and uncertainty of outcome.File | Dimensione | Formato | |
---|---|---|---|
eldowa22a.pdf
accesso aperto
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
PUBBLICO - Tutti i diritti riservati
Dimensione
3.13 MB
Formato
Adobe PDF
|
3.13 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2971623