This papers presents the design and optimization of multiple-input and multiple-output (MIMO) antennas through intelligent methods namely as: surrogate modeling. The optimization process is performed automatically with the combination of Microwave Studio (Dassault Systèmes) and MATLAB numerical analyzer. The proposed optimization method aims to find the optimal solution for the total active reflection coefficient (TARC) specification, S 11 , and S 12 by using shallow neural network. This methodology leads to efficiently size the design parameters of MIMO antenna and to optimize S-parameters and TARC specification jointly. To validate the proposed method, an ultra wideband MIMO antenna in the frequency band of 3.1 GHz to 10.6 GHz is designed and optimized.

Surrogate Modeling for Designing and Optimizing MIMO Antennas / Kouhalvandi, Lida; Matekovits, Ladislau. - ELETTRONICO. - (2022), pp. 1540-1541. (Intervento presentato al convegno 2022 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (AP-S/URSI) tenutosi a Denver, CO, USA nel 10-15 July 2022) [10.1109/AP-S/USNC-URSI47032.2022.9886514].

Surrogate Modeling for Designing and Optimizing MIMO Antennas

Matekovits, Ladislau
2022

Abstract

This papers presents the design and optimization of multiple-input and multiple-output (MIMO) antennas through intelligent methods namely as: surrogate modeling. The optimization process is performed automatically with the combination of Microwave Studio (Dassault Systèmes) and MATLAB numerical analyzer. The proposed optimization method aims to find the optimal solution for the total active reflection coefficient (TARC) specification, S 11 , and S 12 by using shallow neural network. This methodology leads to efficiently size the design parameters of MIMO antenna and to optimize S-parameters and TARC specification jointly. To validate the proposed method, an ultra wideband MIMO antenna in the frequency band of 3.1 GHz to 10.6 GHz is designed and optimized.
2022
978-1-6654-9658-2
File in questo prodotto:
File Dimensione Formato  
Surrogate_Modeling_for_Designing_and_Optimizing_MIMO_Antennas.pdf

non disponibili

Descrizione: Surrogate_Modeling_for_Designing_and_Optimizing_MIMO_Antennas
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 1.74 MB
Formato Adobe PDF
1.74 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
AP_S_2022_Conference__USA_update_affilication.pdf

accesso aperto

Descrizione: Surrogate_Modeling_for_Designing_and_Optimizing_MIMO_Antennas
Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 1.05 MB
Formato Adobe PDF
1.05 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2971608