The possibility of establishing a new paradigm for commercial aviation towards high-speed flight in the next decades shall be inevitably preceded by the increase of Technology Readiness Level for those relevant enabling technologies associated to propulsion, thermal management and on-board subsystems, with particular attention also to environmental sustainability and economic viability of the proposed concepts. New design methodologies for both aircraft and on-board subsystems design shall then be based on holistic approaches able to catch the strong interactions between vehicle configuration, mission and subsystems architecture, which characterize high-speed aircraft layouts. This paper proposes a methodology for the preliminary sizing of propellant subsystems for liquid hydrogen powered hypersonic cruisers. Making benefit of traditional approaches, the process aims at introducing new design aspects directly connected to the peculiar multifunctional architecture of on-board subsystems for high-speed vehicles, so to be able to include additional analyses in early design stages, especially in case of high level of on-board integration. Notably, impact of requirements for Center of Gravity control, thermal, and, in general, energy management are considered as integral part of the method, with crucial implications on architecture selection. After the introduction of design algorithms for subsystem sizing, the STRATOFLY MR3 hypersonic cruiser is taken as reference case study in order to provide a practical example of application of the proposed approach on a highly integrated platform.

Propellant subsystem design for hypersonic cruiser exploiting liquid hydrogen / Ferretto, D.; Fusaro, R.; Viola, N.. - ELETTRONICO. - (2022). (Intervento presentato al convegno AIAA Aviation 2022 Forum tenutosi a Chicago, IL (USA) nel 27/06/2022 - 01/07/2022) [10.2514/6.2022-3381].

Propellant subsystem design for hypersonic cruiser exploiting liquid hydrogen

Ferretto D.;Fusaro R.;Viola N.
2022

Abstract

The possibility of establishing a new paradigm for commercial aviation towards high-speed flight in the next decades shall be inevitably preceded by the increase of Technology Readiness Level for those relevant enabling technologies associated to propulsion, thermal management and on-board subsystems, with particular attention also to environmental sustainability and economic viability of the proposed concepts. New design methodologies for both aircraft and on-board subsystems design shall then be based on holistic approaches able to catch the strong interactions between vehicle configuration, mission and subsystems architecture, which characterize high-speed aircraft layouts. This paper proposes a methodology for the preliminary sizing of propellant subsystems for liquid hydrogen powered hypersonic cruisers. Making benefit of traditional approaches, the process aims at introducing new design aspects directly connected to the peculiar multifunctional architecture of on-board subsystems for high-speed vehicles, so to be able to include additional analyses in early design stages, especially in case of high level of on-board integration. Notably, impact of requirements for Center of Gravity control, thermal, and, in general, energy management are considered as integral part of the method, with crucial implications on architecture selection. After the introduction of design algorithms for subsystem sizing, the STRATOFLY MR3 hypersonic cruiser is taken as reference case study in order to provide a practical example of application of the proposed approach on a highly integrated platform.
2022
978-1-62410-635-4
File in questo prodotto:
File Dimensione Formato  
Propellant_STRATOFLY_Full.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 1.3 MB
Formato Adobe PDF
1.3 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Propellant_STRATOFLY_Full_Open.pdf

accesso aperto

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 1.4 MB
Formato Adobe PDF
1.4 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2971106