Let Q(3) be the complex 3-quadric endowed with its standard complex conformal structure. We study the complex conformal geometry of isotropic curves in Q(3). By an isotropic curve, we mean a nonconstant holomorphic map from a Riemann surface into Q(3), null with respect to the conformal structure of Q(3). The relations between isotropic curves and a number of relevant classes of surfaces in Riemannian and Lorentzian spaceforms are discussed.
Conformal geometry of isotropic curves in the complex quadric / Musso, E; Nicolodi, L. - In: INTERNATIONAL JOURNAL OF MATHEMATICS. - ISSN 0129-167X. - ELETTRONICO. - 33:08(2022). [10.1142/S0129167X22500549]
Conformal geometry of isotropic curves in the complex quadric
Musso, E;Nicolodi, L
2022
Abstract
Let Q(3) be the complex 3-quadric endowed with its standard complex conformal structure. We study the complex conformal geometry of isotropic curves in Q(3). By an isotropic curve, we mean a nonconstant holomorphic map from a Riemann surface into Q(3), null with respect to the conformal structure of Q(3). The relations between isotropic curves and a number of relevant classes of surfaces in Riemannian and Lorentzian spaceforms are discussed.File | Dimensione | Formato | |
---|---|---|---|
Int-J.Math-2022.pdf
accesso riservato
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
1.5 MB
Formato
Adobe PDF
|
1.5 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
isotropic_curves_Q3.pdf
Open Access dal 24/06/2023
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
Pubblico - Tutti i diritti riservati
Dimensione
7.56 MB
Formato
Adobe PDF
|
7.56 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2971105