Let Q(3) be the complex 3-quadric endowed with its standard complex conformal structure. We study the complex conformal geometry of isotropic curves in Q(3). By an isotropic curve, we mean a nonconstant holomorphic map from a Riemann surface into Q(3), null with respect to the conformal structure of Q(3). The relations between isotropic curves and a number of relevant classes of surfaces in Riemannian and Lorentzian spaceforms are discussed.

Conformal geometry of isotropic curves in the complex quadric / Musso, E; Nicolodi, L. - In: INTERNATIONAL JOURNAL OF MATHEMATICS. - ISSN 0129-167X. - ELETTRONICO. - 33:08(2022). [10.1142/S0129167X22500549]

Conformal geometry of isotropic curves in the complex quadric

Musso, E;Nicolodi, L
2022

Abstract

Let Q(3) be the complex 3-quadric endowed with its standard complex conformal structure. We study the complex conformal geometry of isotropic curves in Q(3). By an isotropic curve, we mean a nonconstant holomorphic map from a Riemann surface into Q(3), null with respect to the conformal structure of Q(3). The relations between isotropic curves and a number of relevant classes of surfaces in Riemannian and Lorentzian spaceforms are discussed.
File in questo prodotto:
File Dimensione Formato  
Int-J.Math-2022.pdf

accesso riservato

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 1.5 MB
Formato Adobe PDF
1.5 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
isotropic_curves_Q3.pdf

Open Access dal 24/06/2023

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Pubblico - Tutti i diritti riservati
Dimensione 7.56 MB
Formato Adobe PDF
7.56 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2971105