Let X be a random variable with distribution function F and let F_X be the family of proportional reversed hazard rate distribution functions associated to F. Given the random vector (X, Y) with copula C and respective marginal distribution functions F and G ∈ F_X, we obtain sufficient conditions for the existence of G ∈ F_X that minimizes E|X − Y |.

A Minimizing Problem of Distances Between Random Variables with Proportional Reversed Hazard Rate Functions / Ortega Jimenez, Patricia; Pellerey, Franco; Sordo, Miguel; Suarez-Llorens, Alfonso. - STAMPA. - 1433:(2023), pp. 311-318. [10.1007/978-3-031-15509-3_41]

A Minimizing Problem of Distances Between Random Variables with Proportional Reversed Hazard Rate Functions

Pellerey, Franco;
2023

Abstract

Let X be a random variable with distribution function F and let F_X be the family of proportional reversed hazard rate distribution functions associated to F. Given the random vector (X, Y) with copula C and respective marginal distribution functions F and G ∈ F_X, we obtain sufficient conditions for the existence of G ∈ F_X that minimizes E|X − Y |.
978-3-031-15508-6
978-3-031-15509-3
Building Bridges between Soft and Statistical Methodologies for Data Science.
File in questo prodotto:
File Dimensione Formato  
Paper SMDS 1.pdf

embargo fino al 25/08/2023

Descrizione: Pre-print
Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 245.83 kB
Formato Adobe PDF
245.83 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
paper distances.pdf

non disponibili

Descrizione: versione editoriale
Tipologia: 2a Post-print versione editoriale / Version of Record
Dimensione 8.83 MB
Formato Adobe PDF
8.83 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2970833