Let U = (U-n)(n >= 0) be a Lucas sequence and, for every prime number p, let rho(U)(p) be the rank of appearance of p in U, that is, the smallest positive integer k such that p divides U-k, whenever it exists. Furthermore, let d be an odd positive integer. Under some mild hypotheses, we prove an asymptotic formula for the number of primes p <= x such that d divides p(U)(p), as x -> +infinity.
On the divisibility of the rank of appearance of a Lucas sequence / Sanna, Carlo. - In: INTERNATIONAL JOURNAL OF NUMBER THEORY. - ISSN 1793-0421. - 18:10(2022), pp. 2145-2156. [10.1142/S1793042122501093]
On the divisibility of the rank of appearance of a Lucas sequence
Carlo Sanna
2022
Abstract
Let U = (U-n)(n >= 0) be a Lucas sequence and, for every prime number p, let rho(U)(p) be the rank of appearance of p in U, that is, the smallest positive integer k such that p divides U-k, whenever it exists. Furthermore, let d be an odd positive integer. Under some mild hypotheses, we prove an asymptotic formula for the number of primes p <= x such that d divides p(U)(p), as x -> +infinity.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
On-the-divisibility-of-the-rank-of-appearance-of-a-Lucas-sequence.pdf
accesso aperto
Tipologia:
1. Preprint / submitted version [pre- review]
Licenza:
Pubblico - Tutti i diritti riservati
Dimensione
175.25 kB
Formato
Adobe PDF
|
175.25 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento:
https://hdl.handle.net/11583/2970795