The optimization of the piston bowl design has been shown to have a great potential for air–fuel mixing improvement, leading to significant fuel consumption and pollutant emissions reductions for diesel engines. With this aim, a conventional re-entrant bowl for a 1.6 L light-duty diesel engine was compared with two innovative piston designs: a stepped-lip bowl and a radial-bumps bowl. The potential benefits of these innovative bowls were assessed through 3D-CFD simulations, featuring a calibrated spray model and detailed chemistry. To analyse the impact of these innovative designs, two different engine operating conditions were scrutinized, corresponding to the rated power and a partial load, respectively. Under the rated power engine operating condition, a start of injection sensitivity was then carried out to assess the optimal spray–wall interaction. Results highlighted that, thanks to optimal injection phasing, faster mixing-controlled combustion could be reached with both the innovative designs. Moreover, the requirements in terms of swirl were also investigated, and a higher swirl ratio was found to be necessary to improve the mixing process, especially for the radial-bumps design. Finally, at part-load operating conditions, different exhaust gas recirculation (EGR) rates were analysed for two injection pressure levels. The stepped-lip and radial-bumps bowls highlighted reduced indicated specific fuel consumption (ISFC) and soot emissions values over different rail pressure levels, guaranteeing NOx control thanks to the higher EGR tolerance compared with the re-entrant bowl. The results suggested the great potential of the investigated innovative bowls for improving efficiency and reducing emissions, thus paving the way for further possible optimization through the combination of these designs.
Numerical Assessment on the Influence of Engine Calibration Parameters on Innovative Piston Bowls Designed for Light-Duty Diesel Engines / Millo, F.; Piano, A.; Roggio, S.; Pesce, F. C.; Vassallo, A.; Bianco, A.. - In: ENERGIES. - ISSN 1996-1073. - ELETTRONICO. - 15:10(2022), p. 3799. [10.3390/en15103799]
Numerical Assessment on the Influence of Engine Calibration Parameters on Innovative Piston Bowls Designed for Light-Duty Diesel Engines
Millo F.;Piano A.;Roggio S.;
2022
Abstract
The optimization of the piston bowl design has been shown to have a great potential for air–fuel mixing improvement, leading to significant fuel consumption and pollutant emissions reductions for diesel engines. With this aim, a conventional re-entrant bowl for a 1.6 L light-duty diesel engine was compared with two innovative piston designs: a stepped-lip bowl and a radial-bumps bowl. The potential benefits of these innovative bowls were assessed through 3D-CFD simulations, featuring a calibrated spray model and detailed chemistry. To analyse the impact of these innovative designs, two different engine operating conditions were scrutinized, corresponding to the rated power and a partial load, respectively. Under the rated power engine operating condition, a start of injection sensitivity was then carried out to assess the optimal spray–wall interaction. Results highlighted that, thanks to optimal injection phasing, faster mixing-controlled combustion could be reached with both the innovative designs. Moreover, the requirements in terms of swirl were also investigated, and a higher swirl ratio was found to be necessary to improve the mixing process, especially for the radial-bumps design. Finally, at part-load operating conditions, different exhaust gas recirculation (EGR) rates were analysed for two injection pressure levels. The stepped-lip and radial-bumps bowls highlighted reduced indicated specific fuel consumption (ISFC) and soot emissions values over different rail pressure levels, guaranteeing NOx control thanks to the higher EGR tolerance compared with the re-entrant bowl. The results suggested the great potential of the investigated innovative bowls for improving efficiency and reducing emissions, thus paving the way for further possible optimization through the combination of these designs.File | Dimensione | Formato | |
---|---|---|---|
energies-15-03799.pdf
accesso aperto
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Creative commons
Dimensione
4.66 MB
Formato
Adobe PDF
|
4.66 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2970140