Adversarial machine learning manipulates datasets to mislead machine learning algorithm decisions. We propose a new approach able to detect adversarial attacks, based on eXplainable and Reliable AI. The results obtained show how canonical algorithms may have difficulty in identifying attacks, while the proposed approach is able to correctly identify different adversarial settings.

On The Detection Of Adversarial Attacks Through Reliable AI / Vaccari, Ivan; Carlevaro, Alberto; Narteni, Sara; Cambiaso, Enrico; Mongelli, Maurizio. - ELETTRONICO. - (2022), pp. 1-6. (Intervento presentato al convegno IEEE INFOCOM 2022 - IEEE Conference on Computer Communications tenutosi a New York (USA) nel 02-05 May 2022) [10.1109/INFOCOMWKSHPS54753.2022.9797955].

On The Detection Of Adversarial Attacks Through Reliable AI

Narteni, Sara;
2022

Abstract

Adversarial machine learning manipulates datasets to mislead machine learning algorithm decisions. We propose a new approach able to detect adversarial attacks, based on eXplainable and Reliable AI. The results obtained show how canonical algorithms may have difficulty in identifying attacks, while the proposed approach is able to correctly identify different adversarial settings.
2022
978-1-6654-0926-1
File in questo prodotto:
File Dimensione Formato  
On_The_Detection_Of_Adversarial_Attacks_Through_Reliable_AI.pdf

accesso riservato

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 1.64 MB
Formato Adobe PDF
1.64 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Infocom_Adversarial.pdf

accesso aperto

Descrizione: On the detection of adversarial attacks through Reliable AI
Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Pubblico - Tutti i diritti riservati
Dimensione 1.24 MB
Formato Adobe PDF
1.24 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2968843