The health assessment of strategic infrastructures and bridges represents a critical variable for planning appropriate maintenance operations. The high costs and complexity of traditional periodical monitoring with elevating platforms have driven the search for more efficient and flexible methods. Indeed, recent years have seen the growing diffusion and adoption of non-invasive approaches consisting in the use of Unmanned Aerial Vehicles (UAVs) for applications that range from visual inspection with optical sensors to LiDAR technologies for rapid mapping of the territory. This study defines two different methodologies for bridge inspection. A first approach involving the integration of traditional topographic and GNSS techniques with TLS and photogrammetry with cameras mounted on UAV was compared with a UAV-LiDAR method based on the use of a DJI Matrice 300 equipped with a LiDAR DJI Zenmuse L1 sensor for a manual flight and an automatic one. While the first workflow resulted in a centimetric accurate but time-consuming model, the UAV-LiDAR resulting point cloud’s georeferencing accuracy resulted to be less accurate in the case of the manual flight under the bridge for GNSS signal obstruction. However, a photogrammetric model reconstruction phase made with Ground Control Points and photos taken by the L1-embedded camera improved the overall accuracy of the workflow, that could be employed for flexible low-cost mapping of bridges when medium level accuracy (5–10 cm) is accepted. In conclusion, a solution for integrating interactively final 3D products in a Bridge Management System environment is presented.

INTEGRATION OF UAV-LIDAR AND UAV-PHOTOGRAMMETRY FOR INFRASTRUCTURE MONITORING AND BRIDGE ASSESSMENT / Gaspari, F.; Ioli, F.; Barbieri, F.; Belcore, E.; Pinto, L.. - In: INTERNATIONAL ARCHIVES OF THE PHOTOGRAMMETRY, REMOTE SENSING AND SPATIAL INFORMATION SCIENCES. - ISSN 1682-1750. - XLIII-B2-2022:(2022), pp. 995-1002. [10.5194/isprs-archives-XLIII-B2-2022-995-2022]

INTEGRATION OF UAV-LIDAR AND UAV-PHOTOGRAMMETRY FOR INFRASTRUCTURE MONITORING AND BRIDGE ASSESSMENT

Belcore, E.;
2022

Abstract

The health assessment of strategic infrastructures and bridges represents a critical variable for planning appropriate maintenance operations. The high costs and complexity of traditional periodical monitoring with elevating platforms have driven the search for more efficient and flexible methods. Indeed, recent years have seen the growing diffusion and adoption of non-invasive approaches consisting in the use of Unmanned Aerial Vehicles (UAVs) for applications that range from visual inspection with optical sensors to LiDAR technologies for rapid mapping of the territory. This study defines two different methodologies for bridge inspection. A first approach involving the integration of traditional topographic and GNSS techniques with TLS and photogrammetry with cameras mounted on UAV was compared with a UAV-LiDAR method based on the use of a DJI Matrice 300 equipped with a LiDAR DJI Zenmuse L1 sensor for a manual flight and an automatic one. While the first workflow resulted in a centimetric accurate but time-consuming model, the UAV-LiDAR resulting point cloud’s georeferencing accuracy resulted to be less accurate in the case of the manual flight under the bridge for GNSS signal obstruction. However, a photogrammetric model reconstruction phase made with Ground Control Points and photos taken by the L1-embedded camera improved the overall accuracy of the workflow, that could be employed for flexible low-cost mapping of bridges when medium level accuracy (5–10 cm) is accepted. In conclusion, a solution for integrating interactively final 3D products in a Bridge Management System environment is presented.
File in questo prodotto:
File Dimensione Formato  
isprs-archives-XLIII-B2-2022-995-2022.pdf

accesso aperto

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 1.39 MB
Formato Adobe PDF
1.39 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2966740