This work proposes LDVS, a learnable binary local descriptor devised for matching natural images within the MPEG CDVS framework. LDVS descriptors are learned so that they can be sign-quantized and compared using the Hamming distance. The underlying convolutional architecture enjoys a moderate parameters count for operations on mobile devices. Our experiments show that LDVS descriptors perform favorably over comparable learned binary descriptors at patch matching on two different datasets. A complete pair-wise image matching pipeline is then designed around LDVS descriptors, integrating them in the reference CDVS evaluation framework. Experiments show that LDVS descriptors outperform the compressed CDVS SIFT-like descriptors at pair-wise image matching over the challenging CDVS image dataset.

Learnable Descriptors for Visual Search / Migliorati, A.; Fiandrotti, A.; Francini, G.; Leonardi, R.. - In: IEEE TRANSACTIONS ON IMAGE PROCESSING. - ISSN 1941-0042. - ELETTRONICO. - 30:(2020), pp. 80-91. [10.1109/TIP.2020.3031216]

Learnable Descriptors for Visual Search

Migliorati A.;
2020

Abstract

This work proposes LDVS, a learnable binary local descriptor devised for matching natural images within the MPEG CDVS framework. LDVS descriptors are learned so that they can be sign-quantized and compared using the Hamming distance. The underlying convolutional architecture enjoys a moderate parameters count for operations on mobile devices. Our experiments show that LDVS descriptors perform favorably over comparable learned binary descriptors at patch matching on two different datasets. A complete pair-wise image matching pipeline is then designed around LDVS descriptors, integrating them in the reference CDVS evaluation framework. Experiments show that LDVS descriptors outperform the compressed CDVS SIFT-like descriptors at pair-wise image matching over the challenging CDVS image dataset.
File in questo prodotto:
File Dimensione Formato  
MFFR_TSIP-2021_preprint.pdf

accesso aperto

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Pubblico - Tutti i diritti riservati
Dimensione 5.7 MB
Formato Adobe PDF
5.7 MB Adobe PDF Visualizza/Apri
tip.2020.3031216.pdf

accesso riservato

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 3.03 MB
Formato Adobe PDF
3.03 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2964755