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Learnable Descriptors for Visual Search
Andrea Migliorati, Member, IEEE, Attilio Fiandrotti, Senior, IEEE, Gianluca Francini,

and Riccardo Leonardi, Fellow, IEEE

Abstract—This work proposes LDVS, a learnable binary local
descriptor devised for matching natural images within the MPEG
CDVS framework. LDVS descriptors are learned so that they can
be sign-quantized and compared using the Hamming distance.
The underlying convolutional architecture enjoys a moderate
parameters count for operations on mobile devices. Our ex-
periments show that LDVS descriptors perform favorably over
comparable learned binary descriptors at patch matching on two
different datasets. A complete pair-wise image matching pipeline
is then designed around LDVS descriptors, integrating them in
the reference CDVS evaluation framework. Experiments show
that LDVS descriptors outperform the compressed CDVS SIFT-
like descriptors at pair-wise image matching over the challenging
CDVS image dataset.

Index Terms—pair-wise image matching, patch matching, bi-
nary descriptors, convolutional neural networks, fully convolu-
tional neural networks

I. INTRODUCTION

THE MPEG CDVS (Compact Descriptors for Visual
Search) standard [1] aims at low-complexity, bitrate-

efficient, large scale image matching and retrieval over mobile
devices. Preliminarily, SIFT descriptors [2], [3] are extracted
from the image and compressed as binary local descriptors.
Each image is represented as a set of compressed descriptors,
the number and size depending on the target descriptor bitrate,
i.e. the encoding mode. Then, compressed descriptors are
combined into a global descriptor. The ensemble of local
descriptors and global descriptor extracted from an image
forms the image CDVS descriptor. Images can be matched
comparing the relative CDVS descriptors in multiple ways,
such as matching pairs of local descriptors comparing Ham-
ming distances followed by a geometric consistency check.

Recent research investigated the potential of deep convolu-
tional architectures to learn global descriptors. For example,
the approach in [4] consists of learning a global image hash
code via a convolutional neural network. In [5] it is proposed
to learn a global descriptor via a trainable neural network
functions which aggregate the local descriptors into a global
representation. In [6] the compression of a global CDVS
descriptor is formulated as a resource-constrained optimization
problem. Recently, MPEG has standardized the CDVA (Com-
pact Descriptors for Video Analysis) technology, a successor
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to CDVS tackling image retrieval in video sequences. In the
CDVA standard [7], CDVS local and global descriptors are
complemented with a global descriptor called Nested Invari-
ance Pooling (NIP) learned using a convolutional architecture
[8].

Far less attention has been devoted to the challenging prob-
lem of how to learn discriminative, compact, local descriptors,
and how to possibly integrate them in the MPEG CDVS
framework. Existing research has either focused on GPU-
accelerating SIFT descriptors extraction [9] or on learning
SIFT-like descriptors in a supervised framework [10]. SIFT-
like learned descriptors retain desirable properties such as
invariance to rotations, illumination, and perspective changes
[11]. Interesting results are reported when pairs or triplets of
patches are jointly encoded and a decision network is trained to
learn an appropriate distance metric [12], [13]. While complete
image matching pipelines based on a deep learning framework
such as [14] go beyond the scope of the present work, it shows
the potentials of image matching architectures based on deep
learning frameworks.

Therefore, it is not clear how a learned local descriptor
would perform when compared to an efficient standardized
solution such as MPEG CDVS. Namely, existing learnable
descriptors are usually designed with few constraints. On
the contrary, the CDVS standard mandates the use of binary
descriptors that shall be compared via Hamming distance
within a SIFT-tailored geometry consistency framework. In
detail, it is not clear how such approaches would perform when
a geometric consistency check framework is introduced in the
processing chain. Finally, little if no attention has been posed
to the problem of keeping the descriptor complexity under
control, as done in the CDVS standard.

This work proposes a pair-wise image matching archi-
tecture designed around learnable local binary descriptors
(LDVS descriptors in the following). We introduce a fully
convolutional architecture for learning binary local descriptors
in a supervised way. Our design specifically allows for the
learning of real-valued descriptors that can be sign-quantized
at deployment time, resulting in binary descriptors that lean
to the same performance at matching as the float ones, while
allowing for comparison via Hamming distance as required by
the CDVS standard. Furthermore, fewer parameters make com-
puting LDVS descriptors simpler over memory-constrained
devices as per CDVS design goals. Then, we design a com-
plete pipeline for pair-wise image matching around LDVS
descriptors that retains the key components of the MPEG
CDVS standard, effectively integrating the proposed learned
descriptors in the CDVS standard. This pipeline includes a
geometric consistency check and allows us to compare with
CDVS on an identical descriptor matching context.
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Patch matching experiments over two distinct datasets show
favorable performance over comparable learned binary de-
scriptors despite the design of the latter is not standard-
constrained as in our case. Concerning image matching, LDVS
descriptors improve over CDVS ones according to multiple
performance metrics mainly in reason of the fewer false
matches. To the best of our knowledge, this work is the first
to accurately evaluate the benefits of learned local descriptors
when dropped inside the MPEG CDVS reference pipeline.

II. RELATED WORKS

Recently, advances in deep learning showed one can train
a neural network to learn and compare images via local
descriptors in an automated way without necessarily relying
on handcrafted techniques. A considerable amount of learned
descriptors such as LIFT [14], MatchNet [15], HardNet [16],
and many others [11], [12], [13], [17]. However, these designs
have not gained momentum in practical applications. Hence,
handcrafted local descriptors such as SIFT and its variants
are as relevant as in the previous years, as shown in recent
literature such as [18]. [19], [20] report that handcrafted local
descriptors significantly outperform learned ones in the field
of small-scale retrieval and pair-wise image matching, and 3D
reconstruction respectively. Further, by cross-checking a huge
number of references, authors in [19], report several ambi-
guities and inconsistencies when comparing local descriptors’
performance.

Ultimately, it is not clear which approach is best between
handcrafted and learned descriptors, especially because of the
lack of an unequivocal, meaningful evaluation framework in
which the two methods can be compared within the same
matching pipeline. In this scenario, an increasing number of
binary descriptors have been proposed. In particular, binary
descriptors allow for fast comparison via Hamming distance,
and deployment in limited-resources applications thanks to
their improved rate and storage efficiency. A list of seminal
works would include early descriptors such as BRIEF [21],
BRISK [22], FREAK [23], and ORB [24].

Learned binary descriptors became ever more relevant
thanks to works such as BinBoost [25], in which performance
at patch matching is boosted by learning a set of projection
matrices, and Supervised Discrete Hashing (SDH) [26], in
which binary codes are learned to minimize the classification
loss of a linear classifier. More recently, other deep binary
descriptor learning approaches have been devised [27], [28],
[29], [30], [31], [32], [33], achieving state-of-the-art perfor-
mance. A relevant approach is the one by [34], in which
two asymmetric and complementary descriptors are extracted
from the convolutional domain and fused to constitute the
local descriptor for each patch, however at the expense of
a feature extraction pipeline with doubled complexity. Other
recent works also include the unsupervised methods DeepBit
[35], GraphBit [36], and BinGAN [37], respectively introduc-
ing a set of non-linear projection functions, a regularization
method for Generative Adversarial Networks, and a directed
acyclic graph. Although unsupervised approaches generalize
well over different application domains, with this work we

focus on supervised methods as they ensure stable results when
matching natural images.

III. THE MPEG CDVS STANDARD

Fig. 1. MPEG CDVS pair-wise image matching procedure. Dashed boxed
represent normative parts of the standard.

The MPEG Compact Descriptors for Visual Search (CDVS)
standard regulates methods for efficient compression of SIFT
descriptors. As this work focuses on learning local descriptors,
we will not consider the global descriptor defined in the CDVS
standard. While we refer the reader to [38], [39] for a complete
overview of the standard, hereafter we focus on pair-wise
image matching via local descriptors only. We recall that pair-
wise matching consists of determining whether a query image
depicts the same objects or scene of a reference image as
illustrated in Fig. 1. Notice that as for other MPEG stan-
dards, only the descriptors extraction procedures are normative
(dashed boxes), whereas the matching procedures are meant
for reference.

Fig. 2. Normative process for extracting local descriptors from a single image
in the MPEG CDVS standard.

1) Descriptors Extraction: The Descriptors Extraction pro-
cess is illustrated in Fig. 2 for query and reference images.
First, robust scale-invariant keypoints are located via the
ALP method [1]. Next, detected keypoints are ranked on a
relevance basis according to a statistical model accounting for
parameters such as scale (σ), orientation (θ), position (x, y),
and the number of selected interest points [40]. The number
of retained keypoints depends on the target descriptor bitrate
or CDVS encoding mode, where higher encoding modes entail
more retained keypoints.

Then, a SIFT descriptor is computed over a squared image
patch centered around each selected keypoint. Next, each
SIFT descriptor undergoes a set of transformations based on
linear combinations of the bin values, followed by a scalar
quantization of the obtained values. The quantized values are
then compressed via variable-length coding while the keypoint
coordinates are quantized and arithmetically encoded.In the
following, we will use the term CDVS descriptor to indicate
a set of compressed SIFT descriptors, i.e. to indicate a set
of compressed binary local descriptors. According to the
encoding mode, i.e. the target CDVS descriptor bitrate, the
number and the bitrate of the compressed SIFT descriptor in
the CDVS descriptor changes accordingly.

2) Image Matching: Two images I1 and I2 (e.g., query
image and reference image) are matched comparing the rel-
ative CDVS descriptors as explained in Fig. 3. First, each



3

Fig. 3. MPEG CDVS reference procedure for pair-wise image matching using
the compressed binary local descriptors.

compressed local descriptor is decoded along with the rel-
ative keypoint coordinates. Then, decoded descriptors from
the query and reference images are matched with a two-
way approach. The local descriptors are compared via the
Hamming distance: the ratio between the closest distance and
the next closest distance, denoted as r, is used as a criterion
for distinctiveness to determine keypoint correspondences. If
r exceeds a given threshold ΛCDV S (ratio test threshold [2]),
then the two keypoints are considered a matching pair. For
each matching pair, a score is computed as β =∆ cos (π r/2) as
suggested in the informative part of the standard. Then, based
on the overlapping set of matching pairs that are detected using
a cross-referencing approach (query to reference and reference
to query), a matching score s is computed. Finally, whether
the images are a matching pair will be decided based on the
cumulative effect of matching pairs of keypoints. For matching
keypoints that are present in both directions, s is computed as

s =∆
(
β1→2 + β2→1

2

)
. (1)

A geometric consistency check follows to separate inlier
from outlier pairs of matching keypoints. Inliers have matched
descriptors that refer to the same physical objects. Outliers
instead correspond to matching descriptors that are not ge-
ometrically consistent between the images. The higher the
number of inliers for a pair of matching images, the stronger
and stable the match. The method should also be able to
handle complex cases where the same object appears skewed,
distorted, or under different illumination conditions. Similarly,
the lower the number of outliers that survive the geometric
consistency check, the more reliable is the prediction on
whether the image pair is a match or not. In detail, MPEG
CDVS adopts DISTRAT [41], a technique based on the
histogram of logarithmic distance ratios (LDR) for pairs of
matches. The inliers matching total score S between the two
images is computed accumulating each s-th score of the local
feature matches found to be inlier as:

S =∆
∑

inliers

s. (2)

In particular, one can apply a threshold on the S score to
determine if the query and the reference images are matching,
hence they refer to the same physical object.

IV. PROPOSED ARCHITECTURE

This section describes how to train a neural network to
generate pairs of variable length suitable to determine the cor-
respondence between image patches. The method for matching

pairs of images via binary descriptors that is our ultimate goal
will be instead described in Sec. V.

We propose a network architecture for patch matching that
relies on a Siamese topology, commonly used in problems
where a distance metric function between fixed-size repre-
sentations of equally-sized signals [42] is employed. In the
simplest case, a Siamese network is composed of two identical
feature extraction subnetworks with shared learnable param-
eters to reduce the network complexity. Each subnetwork
generates a representation of the input signal through a fixed-
size vector of features as output. Due to parameter sharing, the
two subnetworks represent the same transfer function from the
input signal to the output feature space. Typically, a (learnable)
metric function compares the two feature vectors and outputs
a distance between the vectors, representing the (dis)similarity
between the input signals. Thanks to the target (dis)similarity
metric, Siamese networks are trained end-to-end in a fully
supervised way to learn representations of the input signals
(descriptors, in the following) that maximize or minimize some
(learnable) feature distance function.

A. Network Architecture

Fig. 4 illustrates our network architecture for encoding
image patches as local descriptors. We will describe our
network in terms of convolutional subnetwork for feature
and descriptor extraction and an appropriate distance metric
function for training such a network.

1) Descriptor Extraction Architecture: The two feature
extraction subnetworks receive as input a pair of identically
sized image patches (P1, P2). Each subnetwork is composed
by M convolutional modules, where each k-th module mk

(k ∈ 1, ...,M ) consists of one convolutional layer, a hyperbolic
tangent (TanH) as activation function, and a 2×2 max-pooling
layer. Concerning the size of the filters, m1 is composed of
5×5 filters (kernels), while the following modules mi+1 to
mM include 3×3 filters. Convolutions are all of the wide type
with one-pixel stride and zero-padding at the border. Let fk
indicate the number of filters in the convolutional layer of
the k-th module, i.e. the number of feature maps output by
the k-th convolutional layer. The number of filters doubles at
every convolutional layer as in fk+1 = 2 fk, so the number
of feature maps produced in output by each convolutional
layer doubles at each module. Let us now indicate as FOk

the number of features output by each module, computed as
fk ×wk × hk, where wk and hk are the width and the height
of the feature maps output by the module. In the following,
we will refer to FMR as feature map resolution such that
FMR = wk × hk.
Since the pooling layer reduces both wk and hk at each k-
th module, the number of features output at each modules
decreases by a two-factor, i.e. FOk+1 = FOk

2 . That is, each
module projects the input patch over a smaller space of latent
features which produces a compact patch descriptor. Notice
that by controlling the total number of convolutional modules
M , different trade-offs between semantic level and spatial
detail of the feature maps are possible, as experimentally
shown later on.
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Fig. 4. Left: The proposed neural network architecture for matching pairs of image patches (P1, P2). The network is trained at generating real-valued
descriptors (d1, d2) that separate pairs of matching patches from non-matching pairs by minimizing a cosine similarity metric between the network output
y and the ground truth t. The cosine similarity is only instrumental for training. Right: descriptors (d1, d2) are sign-quantized at the time of deploying the
trained network producing the sought binary descriptors (b1, b2) that can be compared using the Hamming distance as per MPEG CDVS standard.

Each subnetwork includes one bottleneck module which
reduces the dimensionality of the extracted features to B
elements. The bottleneck module is indicated as the (M + 1)-
th convolutional module in the figure since it is implemented
as a convolutional layer with fM+1 = B filters sized 3 × 3
followed by a hyperbolic tangent activation function. Imple-
menting the bottleneck layer as a convolutional rather than a
fully connected layer reduces the network complexity. The
hyperbolic tangent activation function limits the bottleneck
module outputs between -1 and 1. This is consistent with the
choice of the distance metric function used to train the network
illustrated later on. Finally, the output of the two Siamese
subnetworks in the figure is a pair of B-elements real-valued
patch descriptors (d1, d2), where the number of filters in the
bottleneck layer B controls the rate of the descriptors. The
scheme for binarizing the (d1, d2) real-valued descriptors will
be described in the following.

2) Training Distance Metric: We recall that our goal is to
design a network able to generate patch descriptors (d1, d2)
that can be trained end-to-end to match pairs of image patches.
Towards this end, we need a function suitable to account for
the distance between a pair of real-valued descriptors (d1, d2)
in the descriptors space. Works such as [12], for example, rely
on one or more fully connected layers to learn an appropriate
distance metric function. That is, a large number of extra
learnable parameters are required for learning the distance
metric. Thus, we propose to evaluate the similarity between
d1 and d2 via the function

C(d1, d2) =
∆ 〈d1, d2〉
‖d1‖ · ‖d2‖

=

∑B
j=1 d1,jd2,j√∑B

j=1 d
2
1,j

√∑B
j=1 d

2
2,j

(3)

referred to as cosine similarity and whose range lies in [−1, 1].
Such function enjoys several useful properties such as the fact
it is always continuous and differentiable thus allowing a fully
supervised, end-to-end training of the network. Most impor-
tant, the affinity of the cosine similarity with the Hamming
distance [43] enables descriptor binarization and comparison
via Hamming function, as mandated by the CDVS standard.
Concluding, given a pair of patches (P1, P2), the network is
trained to output the cosine similarity y = C(d1, d2) according
to the procedure described in the following. The real-valued

descriptors (d1, d2) learned as above are binarized at inference
time and compared using the Hamming distance as mandated
by the CDVS standard as described in the following.

B. Training Procedure

The architecture described in the previous sections is trained
to minimize the quadratic error between the cosine similarity y
computed over a pair of patches and the corresponding ground
truth label t (i.e. matching or non-matching pair). Let us define
the i-th pair of identically sized patches xi = (P i

1, P
i
2) as the

i-th training sample. P i
1 and P i

2 are a pair of matching patches
or, equivalently, xi is a matching sample if P i

1 and P i
2 represent

the same detail; P i
1 and P i

2 are a pair of non-matching patches
or, equivalently, xi is a non-matching sample otherwise. Let
us define yi = C(di1, d

i
2) as in Eq. 3 and ti respectively as the

network output and the corresponding target output for xi. Our
goal is to learn the network parameters w enabling the network
to generate the descriptors pair (di1, d

i
2) such that yi = ti. To

this end, we decide to encode the target network output ti as
follows. In the case xi is a matching sample, the network shall
generate (di1, d

i
2) so that C(di1, d

i
2) ≈ 1: therefore, we impose

ti = 1 for matching samples. Concerning non-matching sam-
ples, we impose ti = 0 since non-matching patches (P i

1, P
i
2) is

equivalent to measuring the cosine similarity between random
i.i.d. vectors (di1, d

i
2). So, our learned (di1, d

i
2) will be spread-

out descriptors [44], such that the probability of having almost
orthogonal descriptors by randomly sampling pairs of non-
matching samples is close to one. For each i-th training
sample, we optimize the network parameters to minimize a
L(li, yi) loss function which is defined as the quadratic error
between target ti and actual network output yi as

L(ti, yi) = (ti − C(di1, d
i
2))2 (4)

recasting our classification between matching and non-
matching patches as a l2 regularized regression problem. As a
side remark, we also experimented with a Hinge loss function
which offers the possibility to optimize with a margin m.
However, our practical experiments showed no appreciable
performance gain, whereas the choice of a suitable m value
proved to be an additional problem per se.
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Considering the practical aspects of the training procedure,
the gradient of the loss function is minimized via Stochastic
gradient descent and is computed via error gradients back-
propagation for all hidden layers. We observed that prelim-
inary normalizing the input patches over their own l2 norm
increases the network robustness and generalization capacity
with respect to changes in illumination conditions. Notice that
as a preliminary step, we normalize the input patches with
respect to the mean pixel intensity and standard deviation
values computed over the entire training set, as commonly
practiced in the state-of-art approaches. We also experimen-
tally observed that Spatial Batch Normalization [45] improves
both performances as well as convergence speed. Finally, we
found that applying spatial Dropout with probability p = 0.5
before each M -th convolutional layer improves the network
generalization ability. In our experiments in Sec. VI, we
trained the network from scratch for each of the considered B
values in order to be able to find optimal performance.

V. IMAGE MATCHING PIPELINE

In this section, we describe an image matching pipeline
designed around the proposed binary patch descriptors. First,
we detail the process of extracting an LDVS descriptor from
an arbitrary image. Then, we will detail the procedure to match
two images by comparing the relative LDVS descriptors.

A. LDVS Binary Descriptors Extraction

Fig. 5. The procedure for extracting LDVS descriptors from an image.

Fig. 5 illustrates our proposed pipeline for extracting LDVS
descriptors from a natural image (dashed boxes represent
procedures differing from the standard CDVS counterpart
shown in 2).

As per the CDVS standard, robust scale-invariant keypoints
are located in the image using the ALP algorithm and are
ranked on a relevance basis selecting a subset thereof depend-
ing on the descriptor mode as described in Sec. III. Next, we
extract a 64×64 image patch around each retained keypoint as
follows. For a given keypoint, let σ be the relative scale, (x, y)
its position inside the image, and θ its dominant orientation.
A grayscale (8 bit) patch image centered around (x, y), with
a rotation angle equal to θ, inscribed into a circle with radius
set to 3.96 · 2 ·

√
2 · σ (where σ is the scale of the keypoint)

is sampled with a step of 1/64th of the patch size, so that
each patch has 64 × 64 pixels. Bilinear interpolation is used
to find the pixel values after alignment with the patch rotation
angle. The pixel content inside each patch is extracted from a
Gaussian filtered version of the image as done in CDVS during
the compact descriptor computation steps. Next, each 64× 64
patch is provided in input to the trained network illustrated in
Fig. 4.

We recall that the two Siamese subnetworks share the same
parameters, thus providing a patch into any of the convolu-
tional subnetworks yields in output a B-elements descriptor.

However, the descriptor produced by the subnetwork is a
vector of real-valued elements, whereas binary descriptors are
needed to achieve descriptor rates comparable to CDVS. Un-
der the hypothesis (experimentally verified) that the network
generates descriptors with zero-mean elements, each of the B-
elements real-valued descriptor d is quantized to its sign value
over a single bit producing a B-bits descriptor b. Finally, the
coordinates of each keypoint are compressed according to the
CDVS standard as discussed in Sec. III-1. For the sake of
clarity and borrowing from the CDVS terminology, we refer
to each pair of a learnable binary descriptor of B bits and
relative compressed coordinates as a learnable feature.

Summarizing, image I is encoded as a set of learnable
features, one feature for each detected and selected keypoint.
Each feature includes the proposed learnable binary descriptor
and its compressed coordinates. The set of features describing
image I is refereed to as the LDVS descriptor of the image.
The actual number of features in each LDVS descriptor and
the size of each binary descriptor in each feature will depend
on the actual coding mode, as in MPEG CDVS.

B. Image Matching

Fig. 6. Procedure for matching two images comparing the respective LDVS
descriptors.

We detail here the procedure to match two images I1,
I2 via the relative LDVS descriptors as depicted in Fig. 6.
Preliminary, for each feature in the LDVS descriptor, keypoint
coordinates are decoded recovering the (x, y) parameters as-
sociated with each binary descriptor, as per CDVS standard.
At this point, each image is represented as a set of features,
i.e. learned binary descriptors with relative coordinates.

The feature matching block compares query and reference
images features following the principles of the two-way CDVS
matching scheme recalled in Sec. III-2. Namely, for each bi-
nary descriptor b1 in the query LDVS descriptor, we calculate
its Hamming distance with respect to each descriptor b2 in the
reference LDVS descriptor and vice-versa as

H̄(b1, b2) =
1

B
H(b1, b2). (5)

such distance will range from 1 for non-matching pairs, i.e.
for patches representing different details, to 0 for perfectly
identical pairs of patches, i.e. patches representing most likely
the same image detail. As per CDVS standard, if the ratio
r between first closest neighbor distance and second closest
neighbor exceeds the threshold ΛLDV S , then b1 and b2 are
considered a match.

We recall that the network in Fig. 4 has been trained to
discriminate between pairs of matching and non-matching
real-valued descriptors (d1, d2) according to a cosine similarity
function. The choice of the cosine similarity at training time
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is what allows us to compare binary descriptors via Hamming
distance at deployment time. In fact, the cosine similarity
between d1, and d2, defined as in 3, can be expressed as a
function of the L2-normalized inner product between the sign-
quantized descriptors b1 and b2, as in the following. Given the
definition of Hamming distance

H(b1, b2) =∆ ‖b1‖+ ‖b2‖ − 2〈b1, b2〉, (6)

where 〈·, ·〉 refers to the inner product between vectors, and
‖ · ‖ indicates the bit count of the sequence, we can conclude
that the cosine similarity between d1 and d2 (up to a scaling
factor and an additive term) is similar to the Hamming distance
between b1 and b2 [43]. The distance between binary learned
descriptors can be measured as the relative Hamming distance,
which can be efficiently computed via simple bitwise XOR
and POPCNT operations as in the MPEG standard.

The rest of the feature matching procedure follows the
MPEG CDVS specifications recalled in Sec. III-2. After each
descriptor in the query image is matched with its nearest
descriptor in the reference image that survived the ratio test
using a two-way approach, a score s is returned for each pair
of matching descriptors. The following geometric verification
block finally attempts to separate true from false matches
by performing a geometric consistency check using the same
approach [41] used in MPEG CDVS. As a side note, exper-
iments with the RANSAC-based geometry consistency [46]
showed no appreciable performance gain despite increased
computational complexity. Finally, as per the MPEG CDVS
reference image matching procedure, a matching score S for
each pair of images to be compared is returned.

VI. EXPERIMENTAL EVALUATION

In this section, we first experimentally find the hyper-
parameters that maximize the performance of LDVS descrip-
tors over the Brown et al. dataset [47]. Then, we evaluate
and benchmark LDVS descriptors at patch matching over
the Brown et al. and HPatches datasets [19] Finally, the
pairwise image matching pipeline described in Sec. V is
experimentally evaluated in an image matching task comparing
the performance of our LDVS descriptors against the standard
MPEG CDVS pipeline based on compressed SIFT descriptors.

A. Preliminary Analysis

Fig. 7. Example of patches extracted from the Liberty (L), Notre-dame (N)
and Yosemite (Y) datasets.

1) Experimental Setup: The patch matching performance of
the proposed framework is first evaluated over three datasets
composed of 64×64 patches extracted from 3D reconstruc-
tions of the Liberty statue (L), the Notre-dame cathedral (N )
and the Yosemite mountains (Y ) [47]. The patches are centered

upon Difference of Gaussians (DoG) key points with canonical
scale and orientation. A few examples are shown in Fig. 7.

Following the approach of [47], the network is trained
three times, one for each L,N, Y dataset. For each training
set, the network performance is evaluated on the other two
datasets, for a total of six different training/testing setups per
experiment (e.g., in the tables below the N/Y setup refers
to the case in which we train on Notre-dame and test on
Yosemite). For each setup, training takes place over 250k
pairs of matching patches and 250k pairs of non-matching
patches; testing takes place over 25k matching pairs and 25k
non-matching pairs of patches. The proposed neural network
architecture is implemented using the Torch7 framework on
an NVIDIA GeForce GTX 1080 GPU.

The training relies on gradient descent with adaptive opti-
mization (AdaGrad) [48]) over batches of 100 matching sam-
ples and 100 non-matching samples. Throughout the training
phase and for each experiment, an initial learning rate of 10−3,
a learning rate decay of 5 × 10−5 and a weight decay of
10−4 are used. Training ends when the error on the test has
not decreased for 10 consecutive epochs or after 400 epochs.
Following the approach of [47], as a first step ROC curves are
computed thresholding the normalized Hamming distance in
(5) between pairs of binary descriptors of B bits each. For each
setup, the False Positive Rate (FPR) for a True Positive Rate
(TPR) of 95% is measured and in the following is reported as
the percentual patch classification error.

2) Effects of Quantization: As a preliminary experiment,
we investigate the effect of sign-quantization over the learned
descriptors for M=3 convolutional modules and descriptors
of B=128 elements. Fig. 8 shows the cosine similarity (top)
in Eq. 3 and the normalized Hamming distance distributions
(bottom) in Eq. 5 of the matching and non-matching patches
over the entire test set, computed over pairs of real-valued
(d1, d2) and sign-quantized (b1, b2) descriptors, respectively.
The top figure shows that the average cosine similarity be-
tween pairs of matching patches is close to 1, while the
average value of the similarity between non-matching patches
is around zero. This confirms that our neural network has been
trained so to generate descriptors with zero cosine similarity,
i.e. orthogonal, for pairs of non-matching image patches.

TABLE I
PATCH CLASSIFICATION ERROR AS A FUNCTION OF THE NETWORK DEPTH

M FOR DESCRIPTORS OF B = 128 BITS.

M fM FMR N/L Y/L L/N Y/N L/Y N/Y AVG
2 128 16x16 9.53 13.24 5.88 7.47 9.60 9.17 9.15
3 256 8x8 6.94 9.73 4.39 5.05 9.53 9.09 7.46
4 512 4x4 7.72 11.17 5.03 5.64 10.83 8.66 8.18

3) Optimal Network Depth: As a first step, we experiment
at finding the depth of the architecture in Fig. 4 yielding
the best patch matching performance on the Brown et al.
dataset for descriptors of B = 128 bits. Namely, our goal is
to experimentally find the number of convolutional layers M
that maximizes the network performance at patch matching.
To this end, we vary the number of convolutional modules in
Fig. 4 such as M ∈ {2, 3, 4}. As M increases, the number
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Fig. 8. Cosine similarity (top) and normalized Hamming distance (bottom)
distributions of the matching and non-matching patches over the entire test set,
computed over real-valued descriptors (top) and quantized binary descriptors
(bottom).

of featuremaps produced by each layer doubles, while their
resolution is halved. We follow the common design pattern
where the number of filters doubles at each convolutional
layer, starting from f1 = 64 filters in the first layer. For
example, in the case M = 4, we would obtain (f1, f2, f3, f4 =
64, 128, 256, 512).

Table I shows the test set performance of the three different
network configurations in which M varies within {2, 3, 4}.
The fM and FMR = wM × hM columns respectively report
the featuremaps number and resolution (where fM ×FMR =
FOM ). The configuration where featuremaps have 8 × 8
resolution yields the best results. As a possible explanation, we
hypothesize that a shallow architecture with larger featuremaps
(M = 2) does not capture the high-level semantic information
of the patches. On the contrary, a deeper architecture with
low-resolution featuremaps (M = 4) is not able to preserve the
spatial detail of the textures. From now on, in our experiments,
we will consider the architecture with M = 3 convolutional
blocks since it did yield the best results in this experiment.

4) Performance-Complexity Tradeoff: Next, we investigate
the performance-complexity trade-off of the LDVS architec-
ture as a function of the numbers of filters f1, f2, f3 in each
convolutional layer (M = 3). We consider three different
configurations to which we refer to as 0.5X, 1X, 1.5X , in
which the number of filters doubles with m (i.e. module index
of each convolutional layer, going from M=1 to M=3). Let us
indicate as 1X the network architecture considered up to this
point where (f1, f2, f3 = 64, 128, 256). Now, 0.5X indicates
the case where (f1, f2, f3 = 32, 64, 128) (half the number of

filters), and 1.5X to (f1, f2, f3 = 96, 192, 384) (50% more
filters), respectively. For each subnetwork, the M + 1-th con-
volutional layer is replaced by a Fully Connected layer with B
hidden units which takes at input FOM = f3×FMR features
and has B outputs, one for each of the two subnetworks the
Siamese structure is composed of ((FC) scheme). Notice that
only the number of learnable parameters is affected, while the
total number of neurons in the network does not vary. Also, we
recall that the proposed architecture includes 5×5 filters in the
first convolutional layer and 3×3 filters in the following layers.
Moreover, we compare the fully convolutional architecture
proposed in Fig. 4 with an architecture similar to [43] and
comparable to [12], [17], [34], where the bottleneck layer has
a fully connected topology.

Table II reports the memory and computational complex-
ity as the number of learnable parameters and multiply-
add (MADD) operations. The LDSV-FC architecture memory
complexity is dominated by the number of parameters in the
fully connected layer. The number of parameters of LDVS is
between three and four times less than its LDVS-FC counter-
part, showing the benefits of a convolutional bottleneck layer.
Concerning the number of MADD operations, our architecture
has lower complexity than [12] and [34] and about the same
order of complexity of [15] in its no-bottleneck version.

Table III then shows that the proposed fully convolutional
(Conv.) approach has also better performance than the (FC)
variant for almost all configurations despite the lower com-
plexity. In detail, the Conv. 1.5X configuration offers the
smallest average error over the six setups. Hence, in the
following, we will identify our LDVS descriptor with the Conv.
1.5x configuration.

We also experimented at increasing the number of the filters
in each layer beyond 1.5X, up to 2X and 3X. The experiments
showed that while the error over the training set further
decreased, the error over the test set that represents the network
ability to generalize over previously unseen data increased. We
attribute such an effect to the tendency of networks with large
learning capacities to overfit to the training data, especially in
the FC case where the bottleneck layer has a fully connected
topology. Notice that techniques such as L2 regularization and
probabilistic dropout showed to be ineffective towards this
end. In the following, we will refer to the M = 3, Conv.
1.5X architecture as proposed due to its favorable complexity-
performance trade-off.

B. Pair-wise Patch Matching

1) Experiments on Brown et al. dataset: Table IV compares
our LDVS with several state-of-the-art references. LDVS out-
perform or perform favorably with respect to the competitors
on an equal bitrate basis. Only for the N/L, Y/L, and N/Y
setups DeepCD [34] performs better, but at the expense of
a 3 times larger descriptor (768 bits with respect to B =
256 bits for the proposed scheme). We attribute such gains
to the optimal tradeoff between semantic level and resolution
of the feature maps extracted from the patches together with
a better network generalization ability in reason of the fully
convolutional design that is less prone to yield to overfitting
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TABLE II
NUMBER OF LEARNABLE PARAMETERS AND MULTIPLY-ADD (MADD) OPERATIONS AS A FUNCTION OF THE NUMBERS OF FILTERS f1, f2, f3 FOR THE

PROPOSED FULLY CONVOLUTIONAL ARCHITECTURE (conv.) AND THE REFERENCE WHERE THE LAST LAYER IS FULLY CONNECTED (fc) (M = 3,
B = 128) AND FOR SOME COMPARABLE CONVOLUTIONAL ARCHITECTURES

Proposed Approach Other Approaches
Number of Filters Number of Parameters Number of MADD Number of
f1 f2 f3 Convolutional FC Convolutional FC Parameters MADD

0.5x 32 64 128 240 k 1,1 M 8,4 M 9,2 M MatchNet [15] 2.6 M 19.4 M
1x 64 128 256 665 k 2,4 M 30,4 M 32,3 M Zagoruyko et al. [12] 13 M 101 M

1.5x 96 192 384 1,2 M 3,9 M 66 M 68,5 M DeepCD [34] 25 M 135 M

TABLE III
PATCH CLASSIFICATION ERROR OVER BROWN ET AL. AS A FUNCTION OF
THE NUMBER OF FILTERS (f1, f2, f3) FOR THE FULLY CONVOLUTIONAL
LDVS (conv.) AND WHERE THE LAST LAYER IS FULLY CONNECTED (fc)

(m = 3, b = 128).

f1, f2, f3 N/L Y/L L/N Y/N L/Y N/Y AVG

C
on

v. 0.5X 9.60 13.50 5.89 8.26 9.48 9.34 9.35
1X 6.94 9.73 4.39 5.05 9.53 9.09 7.46

1.5X 6.73 9.71 4.08 4.97 8.80 7.63 6.99

FC

0.5X 10.28 14.23 5.68 8.07 9.75 10.20 9.70
1X 6.90 9.56 3.89 5.04 9.93 9.16 7.41

1.5X 7.17 9.81 4.41 4.99 9.42 7.70 7.25

TABLE IV
PATCH CLASSIFICATION ERROR OVER THE BROWN ET AL. DATASET FOR

LDVS AND OTHER BINARY DESCRIPTORS.

B
N/L Y/L L/N Y/N L/Y N/Y AVG

(bits)
BinBoost

64 16.90 22.88 20.49 18.97 21.67 14.54 19.24
[25]

DELFT 64 19.11 20.43 13.59 12.34 19.25 17.36 17.01
[49] 128 16.27 18.32 9.31 10.56 15.77 13.94 14.03

Cov.Opt
1024 8.25 14.84 12.16 8.50 14.8 7.09 11.00

[50]
DeepCD 192 8.31 16.29 14.45 13.62 18.38 8.97 13.34

[34] 768 3.73 9.97 7.82 7.67 11.75 4.35 7.55
L2-Net[33] 128 10.3 11.71 6.37 6.76 13.5 11.57 10.03

L2-Net+ 128 7.44 10.29 3.81 4.31 8.81 7.45 7.01
CS L2-Net 256 2.55 4.24 0.87 1.39 3.81 2.84 2.61

CS L2-Net+ 256 1.71 3.87 0.56 1.09 2.07 1.3 1.76

LDVS

64 9.66 12.38 6.18 6.76 11.88 10.41 9.55
128 6.73 9.71 4.08 4.97 8.80 7.63 6.99
192 6.69 9.43 3.99 4.36 8.32 7.10 6.65
256 6.08 8.66 3.69 4.09 7.51 6.57 6.10

issues. Finally, CS L2Net outperforms CDVS since it relies on
a different and more complex central-surround architecture.

2) Experiments on HPatches dataset: Furthermore, we ex-
periment over the HPatches [19], a large dataset of patches
(2.5M pairs) with predefined evaluation protocol for the tasks
of patch matching, retrieval, and classification. The protocol is
composed of 116 image sequences each of which is provided
with six other images for homographies under different levels
of geometric noise and illumination variations. We trained our
LDVS descriptor for different descriptor rates over a training
set of 250k matching patches and 250k non-matching patches
and tested it on a previously unseen set of 25k matching
patches and 25k non-matching patches. Then, we computed
the performance at the three considered tasks using the [19]
evaluation framework reporting the results in Tab. V. For this

64 128 192 256 768 1,024

5

10

15

20

AV
G

FP
R

LDVS B.Boost DELFT DeepCD Cov.Opt

Fig. 9. Patch classification error (FPR) over Brown et al. as a function of the
descriptor length averaged across all setups (rightmost column of Tab. IV).

experiment, increasing the descriptor length to 192 and 256
did not lead to significant performance improvements. For
this reason, Tab. V reports performance on the three HPatches
tasks obtained with LDVS 128 bits descriptors, showing that
the proposed binary descriptor is competitive with respect to
others, especially at Verification and Retrieval, even at lower
descriptors rates.

TABLE V
AVERAGE MAP (%) FOR LDVS OVER THE HPATCHES [19] DATASET FOR

VERIFICATION, MATCHING AND RETRIEVAL TASKS.

Method Size Verification Matching Retrieval
BRIEF [21] 256 68.82 9.21 24.96
ORB [24] 256 69.10 13.86 28.27

BinBoost [25] 256 74.73 13.19 32.64
DeepBit [29] 256 61.27 13.05 20.61

GraphBit [36] 256 65.19 14.22 25.19
LDVS 128 80.24 14.23 37.05

C. Pair-wise Image Matching Experiments

Next, we evaluate our LDVS descriptors and the relative
pair-wise image matching pipeline described in Sec. V against
the standard MPEG CDVS descriptors and relative image
matching pipeline described in Sec. III-2.

1) Experimental Setup: All our following experiments are
performed over the reference MPEG CDVS dataset, which
consists of about 17k matching pairs and 17k non-matching
pairs of images, hence a considerably large and complex
collection of images. Such dataset is a collection of differ-
ent annotated datasets including the Stanford Mobile Visual
Search Dataset [51], the Stanford Streaming Augmented Re-
ality Dataset [52], and the Zurich Building Image Database
[53]. Images are annotated for pairwise image matching, i.e.
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Fig. 10. Examples of patches sampled at random from the CDVS dataset.

a list of all images depicting the same object (e.g., a specific
building) is provided.

The data required to train the network in Fig. 4 (with M=3
convolutional blocks) from scratch are prepared as follows.
First, we extract a set of about 1.6 million pairs of 64×64
matching patches using the standard CDVS extraction and
matching pipeline. Second, we generate an equally sized set
of non-matching pairs of patches by randomly drawing 64×64
patches from non-matching pairs of images. While such a
choice is not expected to be optimal towards maximizing the
performance of the proposed LDVS descriptors, it is meant
to guarantee a fair comparison with CDVS descriptors. The
above sets of pairs of patches are randomly subdivided into a
training set of 250k pairs of matching patches and 250k pairs
of non-matching patches, whereas the remaining patches are
used for testing purposes. Overall, the training set is composed
of about 1 M pairs of image patches, where matching pairs of
patches are labeled as t = 1 and non-matching pairs as t = 0
as explained in Sec. IV-B as exemplified in Fig. 10. To ensure
the network is tested on patches not seen at training time, we
exclude from the test set patches extracted from images that
contributed at least one patch to the train set. Notice that all
the results reported in the following refer to patches extracted
from the test images.

2) Comparison with MPEG CDVS: We recall that the
CDVS standard considers different bitrates or modes for
representing an image as a collection of compressed SIFT
descriptors. Each CDVS mode yields different average local
descriptors length, and a fixed (maximum) amount of de-
scriptors that can be retained for each image, as done in the
Feature Matching stage in Fig. 5. To ensure a fair comparison,
we first extracted all the CDVS descriptors for all modes,
noting for each mode the average compressed local descriptor
size and the average number of local descriptors per CDVS
descriptor. Then, concerning the proposed LDVS descriptors,
for each mode, we only retained the CDVS average number
of descriptors and limited the descriptor size B to the CDVS
average equivalent number. Table VI summarizes the resulting
average number of local descriptors and the average descriptor
length in bits for our LDVS descriptors and standard CDVS
descriptors.

The performance of our LDVS descriptors and standard
CDVS descriptors are compared according to the following
metrics:

• Number of Inliers per Matching Image (NIM): average
number of true matching inliers for each pair of matching
images.

• Number of matches wrongly labeled as inliers per Non-

TABLE VI
COMPARISON OF THE AVERAGE DESCRIPTOR LENGTH FOR OUR LDVS

DESCRIPTORS AND STANDARD MPEG CDVS DESCRIPTORS.

Mode 2 Mode 3 Mode 4 Mode 5
Max. Selected

250 250 300 500Keypoints
Stand. CDVS 33 bit 67 bit 107 bit 133 bit
Prop. LDVS 32 bit 64 bit 112 bit 128 bit

matching Image (NINM): average number of false match-
ing inliers for each pair of non-matching images.

• Area Under the Curve (AUC): area of the graph under
the S scores ROC curves

• True Positive Rate (TPR): true positives rate for a fixed
1% False Positive Rate as in the official CDVS evaluation
framework.

AUC and TPR are computed by thresholding the S scores
(see 2) for each pair of annotated query/reference image. For
each metric, we report the average value computed over the
annotated CDVS image dataset, i.e. about 17k matching and
17k non-matching images. While the ratio test threshold value
for CDVS (ΛCDV S) is set at 0.85, we verified that optimal per-
formance with LDVS is obtained by setting ΛLDV S = 0.90.

Fig. 11 shows that for each of the four considered met-
rics, the proposed LDVS descriptors outperform the CDVS
reference for every mode (i.e., at any bitrate). Concerning the
number of true inliers NIM, i.e. the number of correct descrip-
tors matches surviving geometry verification, the proposed
approach almost doubles such number with respect to CDVS.
We recall that the proposed approach and CDVS rely on the
same number of descriptors per image since they share the
same keypoint detection and feature selection steps in Fig. 5).
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Fig. 11. Pair-wise image matching performance comparison between the
proposed LDVS and standard CDVS descriptors as a function of the descriptor
mode. Top-left: Number of Inliers per Matching Image (NIM). Top-right:
Number of matches wrongly labeled as inliers per Non-matching Image
(NINM). Bottom-left: Area Under the Curve (AUC). Bottom-right: True
Positive Rate (TPR) when FPR= 1%.
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Fig. 12. Example of inliers as a function of the descriptor mode (or bitrate) for MPEG CDVS (top) and LDVS (below) descriptors. The maximum selected
number of keypoints for Mode 2, Mode 3, Mode 4, and Mode 5, as in Tab. VI, is 250, 250, 300, and 500, respectively. The proposed LDVS descriptor yields
more inliers especially at lower bitrates, enabling robust geometric verification and better performance at image matching.

More inliers are key to improve the robustness of the overall
image matching process, especially at low bitrates where the
available descriptors are few. At the same time, the number
of false inliers NINM is significantly lower for our approach,
especially at low bitrates (CDVS yields about three times more
false inliers at Mode2). That is, in the case of non-matching
images, the average number of matched keypoints that survives
the geometric verification phase and end up wrongly being
considered inliers is considerably lower than CDVS. As a
result of more inliers for true matching pairs and fewer inliers
for nonmatching pairs, our approach scores better than CDVS
in terms of AUC and TPR metrics at all rates. Concluding, this
experiment shows that the proposed LDVS descriptors allow
more robust image matching thanks to the ability to better
discriminate matching images from non-matching ones.

Fig. 12 depicts inliers for CDVS (top) and our LDVS
(bottom) descriptor for a sample image. The picture shows
how our LDVS descriptor yields more inliers than CDVS
at any bitrate. This is particularly evident in Mode 2 and
Mode 3, i.e. in the case where the number of descriptors
available for image matching is lower. In conclusion, our
LDVS descriptors outperform CDVS descriptors even when
fitted within a CDVS-optimized pair-wise image matching
pipeline, especially in the case of limited computational,
storage and bandwidth resources (i.e. at lower bitrates).

VII. CONCLUSIONS AND FUTURE WORKS

The proposed LDVS descriptors are learnable, binary local
descriptors designed for image matching within the MPEG
CDVS international standard. LDVS descriptors are learned
so that they can be sign-quantized and compared using the
Hamming distance as required by the standard. The fully
convolutional architecture exhibits a low parameters count
with respect to comparable architectures. LDVS performs
favorably at patch matching over competing learned binary
descriptor technologies on two challenging datasets Brown et
al. and HPatches. Then, a complete pair-wise image matching
pipeline is designed around the introduced LDVS descriptors.
We integrate them into the reference CDVS evaluation frame-
work that employs a geometric consistency test. Experiments
show that LDVS descriptors outperform same-rate compressed

CDVS descriptors at pair-wise image matching, especially at
low descriptor lengths. We attribute such gains to the LDVS
descriptors ability to generate a greater number of matches
capable to survive geometric consistency checks.
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