The aim of this contribution is to put together in a systematic way several approaches operating at different scales that were recently developed to describe the phenomenon of physical limit of migration, that occurs when the environment surrounding cells results restrictive, and to apply it to tumour growth and invasion. In particular, we will present: (i) a mechanical model of the behaviour of a cell within a microchannel that gives a blockage criterium for its penetration; (ii) a cellular Potts model to describe the dependence of the speed of a malignant cell from the mechanical characteristics both of its compartments (i.e., nucleus and cytosol) and of its environment; (iii) a multiphase model embodying such effects; (iv) the proper interface conditions to implement to deal with tumour invasion across matrix membranes and cell linings.
Multi-level Mathematical Models for Cell Migration in Confined Environments / Scianna, Marco; Preziosi, Luigi. - 370:(2021), pp. 124-140. (Intervento presentato al convegno International Conference by Center for Mathematical Modeling and Data Science MMDS 2020 tenutosi a Osaka (Japan) nel 26-28 October) [10.1007/978-981-16-4866-3_8].
Multi-level Mathematical Models for Cell Migration in Confined Environments
Scianna, Marco;Preziosi, Luigi
2021
Abstract
The aim of this contribution is to put together in a systematic way several approaches operating at different scales that were recently developed to describe the phenomenon of physical limit of migration, that occurs when the environment surrounding cells results restrictive, and to apply it to tumour growth and invasion. In particular, we will present: (i) a mechanical model of the behaviour of a cell within a microchannel that gives a blockage criterium for its penetration; (ii) a cellular Potts model to describe the dependence of the speed of a malignant cell from the mechanical characteristics both of its compartments (i.e., nucleus and cytosol) and of its environment; (iii) a multiphase model embodying such effects; (iv) the proper interface conditions to implement to deal with tumour invasion across matrix membranes and cell linings.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2962782