An instrument for remote control of the robot by wearable brain-computer interface (BCI) is proposed for rehabilitating children with attention-deficit/hyperactivity disorder (ADHD). Augmented reality (AR) glasses generate flickering stimuli, and a single-channel electroencephalographic BCI detects the elicited steady-state visual evoked potentials (SSVEPs). This allows benefiting from the SSVEP robustness by leaving available the view of robot movements. Together with the lack of training, a single channel maximizes the device's wearability, fundamental for the acceptance by ADHD children. Effectively controlling the movements of a robot through a new channel enhances rehabilitation engagement and effectiveness. A case study at an accredited rehabilitation center on ten healthy adult subjects highlighted an average accuracy higher than 83%, with information transfer rate (ITR) up to 39 b/min. Preliminary further tests on four ADHD patients between six- and eight-years old provided highly positive feedback on device acceptance and attentional performance.
Wearable Brain-Computer Interface Instrumentation for Robot-Based Rehabilitation by Augmented Reality / Arpaia, P.; Duraccio, L.; Moccaldi, N.; Rossi, S.. - In: IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT. - ISSN 0018-9456. - STAMPA. - 69:9(2020), pp. 6362-6371. [10.1109/TIM.2020.2970846]
Wearable Brain-Computer Interface Instrumentation for Robot-Based Rehabilitation by Augmented Reality
Duraccio L.;
2020
Abstract
An instrument for remote control of the robot by wearable brain-computer interface (BCI) is proposed for rehabilitating children with attention-deficit/hyperactivity disorder (ADHD). Augmented reality (AR) glasses generate flickering stimuli, and a single-channel electroencephalographic BCI detects the elicited steady-state visual evoked potentials (SSVEPs). This allows benefiting from the SSVEP robustness by leaving available the view of robot movements. Together with the lack of training, a single channel maximizes the device's wearability, fundamental for the acceptance by ADHD children. Effectively controlling the movements of a robot through a new channel enhances rehabilitation engagement and effectiveness. A case study at an accredited rehabilitation center on ten healthy adult subjects highlighted an average accuracy higher than 83%, with information transfer rate (ITR) up to 39 b/min. Preliminary further tests on four ADHD patients between six- and eight-years old provided highly positive feedback on device acceptance and attentional performance.File | Dimensione | Formato | |
---|---|---|---|
IEEE_TIM_Robottino.pdf
accesso aperto
Descrizione: IEEE TIM - AR BCI Robot - Accepted Version
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
PUBBLICO - Tutti i diritti riservati
Dimensione
1.42 MB
Formato
Adobe PDF
|
1.42 MB | Adobe PDF | Visualizza/Apri |
IEEE_TIM_BCI_Robot_2020.pdf
non disponibili
Descrizione: IEEE TIM AR BCI ROBOT - Editorial
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
1.98 MB
Formato
Adobe PDF
|
1.98 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2962563