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Wearable Brain-Computer Interface instrumentation for robot-based
rehabilitation by Augmented Reality

Pasquale Arpaia1, Luigi Duraccio2, Nicola Moccaldi1, and Silvia Rossi1

Abstract—An instrument for remote control of robot by
wearable Brain Computer Interface is proposed for rehabilitating
children with attention deficit/hyperactivity disorder (ADHD).
Augmented Reality (AR) glasses generate flickering stimuli and
a single-channel electroencephalographic Brain Computer Inter-
face detect the elicited Steady State Visual Evoked Potentials
(SSVEP). This allows to benefit from the SSVEP robustness by
leaving available the view of robot movements. Together with
the lack of training, a single channel maximizes the device’s
wearability, fundamental for the acceptance by ADHD children.
Effectively controlling the movements of a robot through a new
channel enhances rehabilitation engagement and effectiveness. A
case study at an accredited rehabilitation center on 10 healthy
adult subjects highlighted an average accuracy higher than 83%,
with Information Transfer Rate (ITR) up to 39 bits per minute.
Preliminary further tests on 4 ADHD patients between 6 and 8
years old provided highly positive feedback on device acceptance
and attentional performance.

I. INTRODUCTION

Attention-deficit/hyperactivity disorder (ADHD) is a
childhood-onset neuropsychiatric disorder, characterized
by persistent and impairing inattention, hyperactivity, and
impulsiveness. In 2013, the Diagnostic and Statistical Manual
of Mental Disorders, Fifth Edition [1], stated a prevalence
of 5%. In 2018, more recent studies estimated a significant
increase (over 10% only in USA) [2]. Accordingly to
European Consensus Statement on diagnosis and treatment
of adult ADHD, this is among the most common psychiatric
disorders of childhood, often persisting into adulthood and
even old age [3].

Existing treatments of children combine different ap-
proaches: pharmacological, behavioral, occupational, cogni-
tive, and psychological [4]. Among the behavioral appraoches,
Brain computer Interface (BCI) has often been proposed as
an innovative method for both detection [5] and treatment
of ADHD [6], [7], [8], [9], [10]. In particular, BCI translate
electrical brainwaves into information regarding a mental
state or a will of the user. In health research for children,
BCI is applied for (i) diagnostics, (ii) communication, (iii)
robotic control (e.g., artificial limbs), and (iv) neurorehabili-
tation. The proposals depend on the measured brainwaves: (i)
P300; (ii) steady-state visual evoked potentials (SSVEPs); (iii)
event-related potentials (ERPs); and (iv) sensorimotor rhythms
(SMR). SSVEPs and ERPs are potentials triggered by an event.
SSVEPs are exogenous potentials [11] because the response,
measured after less than 100 ms, is physiological. ERPs have
higher latency and involving higher mental processes; for this
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reason they too are defined as endogenous [12]: they are
triggered by the mental act of the subject who realizes the
stimulus. Moreover, P 300: is an ERP potential occurring 300
ms after a stimulus, largely used in BCI speller application
[13]. Sensorimotor rhythm refers to a variation of power in
the band 8-25, over sensorimotor cortex. This variation is
generated by the execution or the imagination of a movement
of a part of the body [14]. The SSVEPs, with respect to the
other signals, have a fixed frequency oscillation that allows an
easier detection, even using less electrodes and in conditions of
greater noise. Historically, the use of BCI in ADHD treatment
borrows from the utilization of neurofeedback in training
aimed at reducing seizures in epilepsy [15]. The goal of
neurofeedback is to train the individual to normalize abnormal
neural frequencies by increasing awareness of a normalized
EEG pattern. A new approach always based on biofeedback
seeks to make the exercise more engaging for children by
a game of increasing difficulty [16]. The game progresses
at a speed proportional to child’s attention level . Another
study proves that the playful aspect determining the higher
involvement is directly linked to the attentional performance
[17]. Some further works verified the increase in effectiveness
of the same rehabilitative activity when a robot was involved
[18]. According to [19], the robot can not only be considered a
useful educational tool, but also a sort of body extension. This
allows to experiment and live real "augmented experiences",
able to work both on the perceptive-emotional and on the
cognitive level. In the case of children under the age of eight,
further challenging aspects emerge for BCI application related
to acceptability and attractiveness [20]. Currently, therefore,
the challenge is to create a device highly wearable, attractive,
even inside a playful dimension, as well as reliable (namely,
with accuracy of at least 75%, and latency of a few seconds)
and moreover, trainingless. Based on previous experiences
[21], lower accuracy levels determined relevant disengagement
phenomena in some subjects with respect to the proposed
exercise. The SSVEP could represent a suitable paradigm
for simultaneously promoting the objectives of ergonomics,
accuracy, and latency.

SSVEP is based on the following physiological principle:
a person exposed to a flickering visual stimulus at a given
frequency produces a corresponding cerebral potential in the
occipital area at the same frequency. The limit in applications
involving interaction with the real environment lies precisely in
the massive use of the user’s visual channel. AR technology
allows to mix real and digital contents. Transparent glasses
with an integrated display in the lenses represent a solution
for the use of the SSVEP, by leaving partially free the view.
The flickering stimulus is superimposed on the environment
image without impeding direct vision. SSVEP allowed in a
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previous study the development of a highly wearable single-
channel BCI/AR system for industrial environment, practically
trainingless [21].

In this paper, an instrument for remote control of robot
by wearable SSVEP-based BCI and AR glasses is proposed
for rehabilitating children with ADHD. Effectively controlling
the movements of a life-size robot through a new channel
enhances rehabilitation engagement and effectiveness. In the
following, the basic ideas and the architecture of the proposed
instrument are highlighted in Section III. Then, Section IV
reports the prototyping. In Section V, the metrological analysis
is presented with the main aim of proving the decrease in real-
time latency, by simultaneously keeping accuracy as high as
possible. Then, in Section VI, the suitability for rehabilitation
activities is proved by a case study at an accredited rehabili-
tation center.

II. BACKGROUND

The application of robot technology in autistic children
rehabilitation pointed out encouraging results [22], [23], [24] .
The use of social robots [25],[26],[27] and [28] was proved to
enhance attentional abilities and collaborative behaviors, also
in rehabilitating children with ADHD [29]. The results of a
study where High-Functioning Autism and ADHD children
programmed Lego robots revealed that collaborative behaviors
are strongly related to the enjoyment [30]. In Robot-Assisted
Therapy, children are supported to sustain attention during
a training task [18], [31]. Recently, a jumping and rolling
spherical robot was implemented for treatment of ADHD and
learning disability [32]. In these studies, robots support the
execution of a task. In this paper, the robot enhances the
treatment with BCI: the activity is made more engaging by
offering immediate multisensory feedback to the attentional
effort. BCI’s role is central owing to its well-claimed capability
of re-normalizing brain functional network topology [33].
The robot’s role ancillary to BCI is peculiar in robot-based
rehabilitation. In [34], a game-based training was proposed
for ADHD children, with BCI and the humanoid robot NAO
by Aldebaran Robotics. Main drawback was the long delay
(15–20 s) between the command formation and its execution
by NAO. Delay aversion, i.e. the motivation to escape or avoid
delay, is a distinctive psychological process underlying the
behavioral symptoms and cognitive deficits of ADHD disorder
[35]. Some problems of attention were reported in [36]: a kid
did not perform BCI task because he was attracted by the robot
directly. In fact, the proposed set-up did not allow to watch at
both the robot and the BCI stimulus simultaneously: children
controlled the robot by looking at a pc display. Forcing a
child to sit and fix a screen during a BCI exercise while a
robot circulates around the room will worsen his attention
levels. Therefore, it is important to allow the child to watch,
approach, and follow the robot, without interrupting the BCI-
based exercise.

III. DESIGN

A. Basic Ideas

• BCI for AR-based rehabilitation with robot: A SSVEP-
based single-channel BCI is integrated with a head-

mounted display AR platform. The AR application target
is a rehabilitation robot providing feedback to the pa-
tient remote control. The BCI channel enhances patient
engagement and therapy effectiveness in critical appli-
cations of childhood-onset neuropsychiatric disorders, as
ADHD. This allows to treat effectively arduous symptoms
of persistent and impairing inattention, hyperactivity, and
impulsiveness.

• AR-BCI integration: The integration of (i) the BCI instru-
mentation, consisting of EEG active dry electrodes and
an acquisition unit, (ii) a pair of AR glasses, and (iii) an
external processing unit, hosting BCI algorithms, allows
to pilot the robot remotely by the SSVEP visual stimuli.

• High-wearable BCI: In a differential measurement of
the SSVEP, the difference between the signal in the
occipital and the frontal regions is usually considered,
because the frontal region is not sensitive to the SSVEP
response [21]. In the frontal region, the midline allows
to maximize the distance to the occipital region. Some
people are more sensitive to the SSVEP in the right
rather than the left side of the occipital region [37].
In a trainingless system, the midline was chosen also
to mitigate this difference. A single-channel BCI allows
a high wearability, owing to the low number of EEG
electrodes of a single differential measurement (two for
the negative and the positive input, and one for the
reference) and the miniaturization of the acquisition and
processing units. Reducing the number of channels makes
the activity of removing artifacts from eye movement and
muscle contraction more challenging [38],[39]. If a single
channel is used, this operation is even more complex [40].
The SSVEP paradigm represents a suitable choice also
owing to its particular robustness to the artifacts caused
by eye and muscle movement. In recent years, the use
of dry electrodes helps to improve the wearability of
EEG systems, avoiding the inconveniences of electrolytic
gel [41]. The proposed solution involves customized dry
active electrodes [42].

• Robot for rehabilitation: The robot plays the role of
rehabilitation actuator, by giving also a feedback to the
user in terms of movement and speech. This guarantees
high levels of involvement to the patients, with a positive
impact on the rehabilitation effectiveness.

• EEG signals processing: The BCI is based on Steady-
State Visual Evoked Potential (SSVEP). By analyzing
user’s SSVEP, the proposed system is able to direct the
Robot to the left, or to the right, with an angle of π

6 rad,
π
4 rad, or π

2 rad.
The SSVEP frequency is detected by a correlation al-
gorithm in time domain. The EEG signal, after pass-
band filtering, is compared with sinewaves at the same
frequency of the visual stimulus, in order to detect the
observed stimulus. The example of Fig. 1 highlights
how the elicited SSVEP signal is correlated with the
12-Hz sinewave stimulus. The minimal spectral distance
between the two bins of the available stimulus (10 Hz
and 12 Hz) must be greater than the spectral resolution.
Nevertheless, time windows lower than 0.5 s determine
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Figure 1: Scatter plot between filtered EEG signal and a 12
Hz sinewave

spectral resolution greater than 2 Hz. Therefore, the time
window was minimized as possible to get a minimum
latency beyond the constraint of the spectral resolution.
To this aim, only two stimuli are used, in order to reduce
the visual fatigue, increase the user attention and, thus,
the accuracy of the BCI remote control. The number of
available commands is increased using the eye blink arti-
facts detection. In particular, the commands of start, stop,
and change direction are added. SSVEP and eye blink
detection ensure the feature of a trainingless instrument,
namely capable of working without any preacquired data
from any untrained subject.

B. Architecture

The architecture of the BCI-AR instrumentation is shown in
Fig. 2. In the AR/BCI Integration Platform, the AR Glasses
renders the visual stimuli of the robot control menu, and elicits
SSVEP responses in the patient. Then, in the EEG Wearable
Transducer, the Electrodes, suitably placed on the scalp, sense

Figure 2: Architecture of the BCI-AR instrumentation.

Figure 3: The user starts the AR/BCI App on the AR glasses
(red arrow) to control the robot remotely.

the EEG voltage to be digitized by the Acquisition Unit. Then,
the EEG samples are sent to the Processing Unit (AR/BCI
integration platform). After the processing, the response and
the related command is sent to the robot by means of the Wi-
Fi Transmitter (AR/BCI integration platform). In addiction to
its movements, the robot provides also an acoustic feedback.

C. Operation

The user wears the AR glasses and, by the controller
touchpad, launches the Android application AR/BCI App for
rendering the flickering stimuli to pilot the robot (Fig. 3). By
means of voluntary eye blinks, the user is able to set the three
states of the robot (Fig. 4): Idle State, Change Direction State,
and Move Forward State. As soon as the app is launched, the
robot is in the state "Idle". With the first eye blink, the robot
shifts to the state "Change Direction". Now, the user keeps a
focus watch around one stimulus out of two, and makes the
system send the desired command to the robot. As an example,
the command can be "move to the right" or "move to the left",
with an angle of π

6 rad, π4 rad, or π
2 rad, by processing his/her

corresponding SSVEP. When the direction is set, the user, by a
second eye blink, make the robot move forward. A further eye
blink makes, finally, the robot come back to the state "Idle".

IV. REALIZATION

In the following, the realization of the proposed instrumen-
tation is illustrated by detailing (i) the feature extraction and
processing, (ii) the hardware, and (iii) the software.

A. Feature Extraction and Processing

• SSVEP Frequency Recognition: the frequency elicited by
the observed stimulus is recognized by a correlation-
based algorithm. Given a time window of duration T, the
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Figure 4: State machine for operating the instrument.

related signal fragment is filtered using a passband FIR
filter between 5 and 25 Hz (Fig. 5). Then, the maximum
values among the Pearson correlation coefficients ρ1 and
ρ2 are assessed between the filtered data DF and two
sine waveforms Φ1, and Φ2, each one with a frequency
of the corresponding flickering stimuli and variable phase
φ:

ρ1 = max
φ∈[0,2π]

cov(Df ,Φ1(φ))

σDf
σΦ1(φ)

(1)

ρ2 = max
φ∈[0,2π]

cov(Df ,Φ2(φ))

σDf
σΦ2(φ)

(2)

Therefore, the following features are extracted

F1 = max(ρ1, ρ2) (3)

F2 =
max(ρ1, ρ2)−min(ρ1, ρ2)

min(ρ1, ρ2)
(4)

where Df are the filtered Data, Φ1 and Φ2 the two
sinewaves, φ is the phase, σD the standard deviation of
the filtered data, and σΦ the standard deviation of the
sinewave. Given two threshold values T1 and T2, a signal
fragment was marked as recognized if

F1 > T1 ∩ F2 > T2 (5)

Figure 5: FIR Filter Amplitude frequency response.

Figure 6: Detection of voluntary and involuntary eye blinks.

If condition (5) is not satisfied, a new fragment of length
T, overlapping with the previous one by T/2, is processed.
The latency of this SSVEP detection algorithm, in terms
of the response time of the system, is defined as the time
interval necessary to recognize one of the two frequency
values.

• Eye blink detection: artifacts arising from voluntary eye
blinking are characterized by huge peaks along the EEG
track. Such peaks are exploited to distinguish Voluntary
and involuntary eye blinks when the signal exceeds a
fixed threshold in normalized units, as shown in Fig.6.

B. Hardware

The hardware is shown is Fig.7.

(a) (b)

(c) (d)

Figure 7: Hardware of the system: a) Moverio BT-200, b)
Olimex EEG-SMT, c) Raspberry Pi 3, and d) Sanbot Elf.
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• Glasses: The stimulation unit was developed using the
Moverio BT-200 AR smart glasses (More info available
at [43]). The perceived screen size of the glasses is 2 m at
5 m projected distance, with a refresh rate of 60 Hz. The
AR environment consisted of two white arrows, related to
the commands "move to the right" and "move to the left".
Fig.8 show their positions at the right and left ends of
the screen, respectively. The flickering frequencies were
generated with the Android library OpenGL.

• Acquisition Unit: Brain signals were captured using (i)
two active electrodes positioned at the Frontal Midline
(Fpz), connected to the negative input, and Occipital Mid-
line (Oz) positions, connected to the positive, according
to the international system 10-20 [21], and (ii) a passive
electrode (acting as reference) Driven Right Leg (DRL),
positioned on the earlobe. The Fpz and DRL electrodes
contacts consist of gold-plated, flat surfaces, while the
Oz electrode was modified by adding eight gold-plated
spring connectors to improve the skin contact through the
hair. Signals were then digitized using the Olimex EEG-
SMT, a 10-bit, 256 S/s, differential input Analog-Digital
Converter (ADC) (More info available at [44]).

• Processing Unit: A single-board computer Raspberry Pi
3 More info available at [45] was used as processing unit
and server, to provide the information extrapolated from
the data received via USB from the Olimex. Each start
of the acquisition was sent by the Moverio as soon as the
Raspberry sent the related command to the robot.

• Robot: The target of this application was a SanBot Elf
More info available at [46], a humanoid robot developed
and produced by Qihan Technology Co. Such a robot
is already used in rehabilitation, and the goal of this
application was to direct the robot to the left, to the right,
stopping it and making it move forward according to the
user wishes, giving also a sonorous feedback about what
it is going to do. The robot was connected trough Wi-
Fi to the Raspberry Pi server, retrieving information in a
JSON format.

Figure 8: User perspective with the smart glasses: white arrows
flicker for eliciting SSVEP.

C. Software

• Moverio BT-200: The Android application (more info
available at [47]) home screen contains the buttons Play,
Connect, and Settings. By pressing Settings, the arrow
dimensions, the flickering frequencies, the positions on
the screen, and the color can be configured. The menu
Connect, once the Raspberry IP is added, allows to con-
nect the Moverio to the Raspberry. By pressing Play, the
user starts the flickering of the arrows and the subsequent
EEG signal acquisition.

• Raspberry Pi 3: The software installed on the Raspberry
Pi 3 is a software application in C, aimed at acquiring
via UART the EEG signals digitized by the Olimex. The
Baud Rate is set to 57600 bit/s, the packet size is equal to
17 bytes, and no parity bit was foreseen. Therefore, the
Raspberry processes the EEG data as shown in Fig. 2.
The Raspberry Pi 3 acts also as a Wi-Fi server, receiving
from the Moverio the command of acquisition start, and
sending to the robot the command related to the result of
the processing.

• Sanbot Elf: On the robot Sanbot Elf, an Android applica-
tion is installed for carrying out some tasks, in particular
go forward, stop, move to the right, and move to the left,
depending on the command in JSON format sent by the
Raspberry. The application is run when the user inserts
the IP Address assigned to the robot once connected to
the Raspberry Wi-Fi. Therefore, he/she can press the Start
button. Furthermore, from the app input interface, the
rotation angle of the robot (π6 rad, π

4 rad, or π
2 rad. ),

its speaking velocity, the word to be said if an obstacle
is recognized, can be set.

V. EXPERIMENTAL RESULTS

The SSVEP detection algorithm was characterized in terms
of accuracy and response time. To this aim, brain signals of
20 untrained and healthy volunteers were analyzed by acquir-
ing 24 brain differential signals per subject. The flickering
frequencies were 10 Hz (on the right side of the screen)
and 12 Hz (on the left). One of the main design goals is to
avoid training; therefore, the stimulus frequencies of 10 Hz
and 12 Hz were chosen according to the results of previous
experimental campaigns [21], based on the studies reported in
[48]. In particular, these two frequency values were chosen
because sub-multiples of 60 Hz, the refresh rate of the Head
Mounted Display Epson Moverio BT 200. For a flicker of 10
Hz, the stimulus reverses between black and white every three
frames; a flicker of 12 Hz states in black for three frames and
reverses to white for two frames [49]. Other frequency values
could be obtained as a rounded (and therefore less accurate)
average of a variable frequency stimulus [50]. Each subject
was asked to focus on one stimulus at time, for 10 s. Further
data were acquired, by leaving 10 users free to blink their eyes
without focusing on any of the two stimuli. After processing
the acquired data, the optimal values of the parameters for
frequency and eye blink detection were found. Finally, an on-
field analysis was carried out, by executing a given set of tasks
with the robot.
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A. Accuracy

• SSVEP: The accuracy has been defined as the percentage
of correct responses on the total commands (percentage
of correctly recognized values of frequency). A combi-
nation of parameters T and T1 was used to evaluate the
performance of the SSVEP algorithm. The data set was
processed by using different time windows T: 0.4, 0.5,
0.8, and 1.0 s. For each of them, the features F1 and
F2 were assessed. The luminosity of the environment
was (97 ± 2) lx. The threshold value T2 was fixed
to 0.5, which means that the correlation with a sine
waveform must be at least 50% greater than the other
one. The threshold value T1 was varied from 0.4 to 0.5
for each time window T. The resulting performance in
terms of accuracy and response time is shown in Tabs.
I, II, respectively. Several alternatives were investigated:
for T1 over 0.5, the system accuracy does not increase
significantly, while the latency goes up to 10 s. For T1
under 0.4 s, the accuracy goes down to 50% without a
relevant decrease in latency.
As visible from Tab. I and Tab. II, increasing T1 increases
the accuracy, but unfortunately also the response time. In
Fig. 9, the trade-off between accuracy and time response
is highlighted: the accuracy can be increased at the
expense of response time. Actual data were fitted with a
2th order polynomial function. For example, with a time
response of (3.71 ± 0.92) s, an accuracy of 92.6% was
achieved. An accuracy of 70.8% led to a time response
decreasing to (0.64 ± 0.14) s. A time response of 1.5 s
was selected as the final trade-off for clinical operation.

• Eye blink detection: In a previous exploratory experi-
mental campaign, each voluntary eye blink reached zero
value in normalized unit, i.e. determined as the EEG
device output divided by its full-scale (fig. 6). Only very-
few involuntary eye blinks reached the same zero value.
According to a terminology usual in literature of classi-
fication tasks, therefore, a eye blink detection threshold
equal to 0 guaranteed a perfect recall (no false negative)

Figure 9: Trade-off between accuracy and time response
highlighted in a plot vs parameters T1 and T.

and a maximum precision (minimum false positives). The
accuracy of eye blink detection was assessed by taking
into account the number of voluntary eye blinks correctly
recognized, the total count of voluntary eye blinks, the
total count of involuntary eye blinks, and the number of
involuntary eye blinks wrongly marked as voluntary. The
luminosity of the environment was (147 ± 2) lx. To this
aim, 10 subjects were considered. For each subject, at
least a time window of 120 s of EEG signal was acquired,
in order to capture at least 10 involuntary blinks [51].
After that, each subject was asked to voluntary blink
the eyes for 10 times. In this way, for each subject, 10
voluntary blinks and 10 involuntary blinks were captured.
Therefore, for each subject, the accuracy was assessed as
follows:

Asubject =
Nblink − Eblink

Nblink
· 100 (%) (6)

where Nblink is the total number of blinks, and E is
the error count, that is when an involuntary eye blink is
marked as voluntary, and vice-versa; then, the Accuracy
ranges from 0% (Eblink = Nblink) to 100% (Eblink =
0). The accuracy of the eye blink detection algorithm is
measured as (91.8 ± 3.7)%.

• SSVEP/Eye blink integrated detection: An evaluation of
the accuracy of the system as a whole (AR/BCI/Robot)
was carried out by means of a Java application for
simulating the robot behavior. Such a Java application,
running on a Personal Computer, receives the commands
sent by the Raspberry and behaves in an equivalent
way to the robot SanBot Elf. The luminosity of the
environment was (147 ± 2) lx. 10 subjects were asked to
make the virtual robot reach a target, moving it inside a
maze, as highlighted in Fig.10. The minimum number
of commands to bring the virtual robot out of maze
successfully was estimated to be 14. The accuracy was
assessed as:

Asubject =
Ncommands − Ecommands

Ncommands
· 100 (%)

(7)
where Ncommands is the total number of commands
sent, and Ecommands is the error count. The Accuracy
ranges from 0% (Ecommands = Ncommands) to 100%
(Ecommands = 0). The threshold for eye blink detection

Figure 10: Java Application for simulating the behavior of the
robot.
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Table I: Accuracy (%) of SSVEP detection algorithm for different time windows T and threshold values T1

T1
0.40 0.42 0.44 0.46 0.48 0.50

0.4 70.8 ± 6.7 70.8 ± 6.7 70.2 ± 7.3 69.3 ± 7.5 69.1 ± 7.6 69.7 ± 8.1
T (s) 0.5 73.1 ± 8.2 73.3 ± 7.8 74.7 ± 8.0 75.4 ± 7.6 77.9 ± 7.1 78.5 ± 6.4

0.8 82.0 ± 5.8 84.0 ± 5.8 84.9 ± 5.4 86.1 ± 5.0 86.9 ± 5.2 88.1 ± 4.8
1.0 86.0 ± 4.2 87.2 ± 4.1 89.4 ± 4.1 91.0 ± 4.2 91.8 ± 3.7 92.6 ± 3.6

Table II: Time response (s) of SSVEP detection algorithm for different time windows T and threshold values T1

T1
0.40 0.42 0.44 0.46 0.48 0.50

0.4 0.64 ± 0.14 0.67 ± 0.15 0.72 ± 0.18 0.77 ± 0.19 0.81 ± 0.22 0.89 ± 0.26
T (s) 0.5 0.84 ± 0.18 0.89 ± 0.20 0.95 ± 0.22 1.04 ± 0.26 1.13 ± 0.31 1.22 ± 0.33

0.8 1.65 ± 0.42 1.78 ± 0.45 1.94 ± 0.52 2.12 ± 0.56 2.37 ± 0.65 2.63 ± 0.73
1.0 2.21 ± 0.54 2.41 ± 0.60 2.68 ± 0.69 2.99 ± 0.76 3.27 ± 0.84 3.71 ± 0.92

was set to 0 (normalized unit). The T and T1 were set to
0.50 and 0.44 s, respectively. The performance in terms of
accuracy, time, and number of commands sent is shown
in Tab. III.

B. Response time

The response time was assessed as Information Transfer
Rate (ITR) [52], namely the amount of information conveyed
by the system’s output:

ITR =
(
log2(N) + P log2(P ) + (1− P ) log2

(
1−P
N−1

))
60
T (bit/min) (8)

where N= 3 is the number of available decisions (two from
the SSVEP recognition, and one from the eye blink detection),
P the classification accuracy, and T the time response, shown
in Tabs. I and II. In this application, ITR is maximum when
T is equal to 0.4 s and T1 is equal to 0.40, with an accuracy
of (70.8 ± 6.7)%, and time response of (0.64 ± 0.14) s, as
shown in Tab. IV.

VI. CLINICAL ADHD CASE STUDY

The preliminary on-field validation was carried out on 4
untrained children, from 6 to 8 years old, with different
diagnosis always including ADHD. The robot was controlled
by mapping the brain activity as follows:
• 10 Hz: move to the right (with a rotation angle of π

4 rad);
• 12 Hz: move to the left (with a rotation angle of π

4 rad);
• Eye blink: change State (move forward, stop, and change

direction).
For this task, the parameters for SSVEP detection are the same
of Tab. III. The untrained processing algorithms do not exploit
previously acquired SSVEP response to improve classification.
The luminosity of the environment was (151 ± 2) lx. The
luminosity of the environment may afflict the system accuracy,
because the Augmented Reality Smart Glasses exploit a see-
through technology. When the flickering stimulus is turned
off, the user can see normally the environment. Hence, more
the environment is bright, less the flickering of the stimuli is
visible for the user. This leads to a decrease in accuracy.

Each child had the task of piloting the robot in spaces
progressively reduced in size, by achieving objectives each
time differently positioned. For each child, the length of the
trial was 10 min. The system was presented to the children

making them be confident with both the eye blink and the
SSVEP detection. Each child attended the trial of the other
three. This overcame the initial resistance by two subjects,
convinced to participate in the experiment led by the desire to
emulate their companions. The aim of the experiment was:
• To verify the wearability and the usability of the device;
• To verify the level of the engagement elicited in the user;
• To evaluate the attentional performance.

Each child accepted to wear the electrodes and the smart
glasses. Therefore, each child gave coherent commands to the
robot for the entire length of the trial. None of the children
interrupted the task before the end. Therapists and parents
attended the experiment. For both of them the attentional
performance exhibited by the participants were far superior
to those expected on the basis on the previous experiences.
For some of the participants the execution of a task for 10
continuous min was actually a completely new experience.

A short summary of the experiment results is shown in Tab.
VI. In Tab. V, the proposed system is compared with two
state-of-the-art BCI/robot solutions for children. Performance
parameters mostly supporting the patient’s attention were
chosen [53]: (i) "accuracy to 2 s" and (ii) “mobility and see
through”. In particular, "mobility” is the opportunity of phys-
ical proximity to the robot during the mental task execution.
"See through" is the possibility of maintaining a visual contact
with the robot. The robot, in fact, increases the user interest,
but, at the same time, can distract with respect to the main
task, if experienced as an alternative. Two other parameters,
“wearability” (e.g. number of channels, dry electrodes) and
“trainingless”, relate to the device acceptability, decisive for
children under 8 years of age.

VII. CONCLUSIONS

A system, integrating augmented reality glasses with a
non-invasive single-channel brain-computer interface based
on SSVEP, is proposed for application in children ADHD
rehabilitation. An untrained user can move a robot by focusing
flickering stimuli and using eye blinking. The algorithm for
feature extraction does not require training. The robot, after
receiving the commands, gives acoustic and visual feedback
to the user. The optical see-through AR technology allows to
see the robot movements while looking at the visual stimuli
simultaneously.
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Table III: Performance of SSVEP/Eye blink integrated detection algorithm for T=0.5 s, T1=0.44, and eye blink threshold equal
to 0.

SUBJECT Time (s) Commands Errors Accuracy (%)
#1 124.91 30 5 83.3
#2 217.76 57 12 78.9
#3 107.44 33 6 81.8
#4 94.67 23 5 78.2
#5 102.98 33 5 84.8
#6 195.53 51 11 78.4
#7 59.23 16 2 87.5
#8 95.04 26 2 92.3
#9 104.34 32 4 87.5
#10 142.55 41 7 82.9
AVERAGE 124,44 ± 30,72 34 ± 8 6 ± 2 83,5 ± 2,9

Table IV: ITR (bit/min) of SSVEP/Eye blink detection algorithm at varying time windows T and thresholds T1

T1
0.40 0.42 0.44 0.46 0.48 0.50

0.4 39.37 37.64 33.67 30.20 28.25 26.75
T (s) 0.5 33.86 32.25 32.66 30.65 31.80 30.46

0.8 26.43 26.64 25.39 24.43 22.61 21.45
1.0 23.43 22.46 22.16 21.23 20.06 18.27

Table V: Comparison of proposals in state of art in terms of
2-s accuracy, number of channels, lack of trained algorithm,
and mobility.

2-s Wearability Trainingless Mobility and
Accuracy See Through

[34] < 60 % 3 7 7

[36] n.a. 7 7 7

Our proposal > 80% 3 3 3

The system manages to overcome the main challenges posed
today by the use of innovative strategies for the rehabilitation
of children with ADHD. These challenges are related to
acceptability and degree of involvement guaranteed by the
proposed therapeutic setups. It has been observed that, at
varying the time window T and the threshold T1 of the SSVEP
detection algorithm, the related accuracy ranges from 70.8 to
92.6%, and the time response from 0.64 to 3.71 s, respectively,
with an ITR ranging from 39.37 to 18.27 bit/min. As for the
eye blink detection, the accuracy was estimated about 91.8%
without latency.

A preliminary clinical case study at an accredited rehabilita-
tion center on 10 healthy adult subjects highlighted an average
accuracy of the SSVEP/Eye blink detection algorithm higher
than 83%, with a corresponding time response of about 1.22 s
and ITR up to 39 bits/min. Tests on 4 ADHD patients between
6 and 8 years old offered positive feedback on the device
acceptance and attentional performance.

Table VI: Clinical case study: Performance of SSVEP/Eye
blink integrated detection algorithm for T=0.5 s, T1=0.44, and
eye blink threshold value equal to 0

Subject Age (years) Presence of parents Initial reluctance
#1 6 yes no
#2 7 yes yes
#3 6 yes yes
#4 8 no no

In future work, several convolutional neural networks
trained on each different user and able to achieve better ITR
levels will be employed. The networks training will be guided
by the voice-commands-based interaction user-robot.
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