We study smooth quadric surfaces in the Pfaffian hypersurface in P-14 parameterizing 6 x 6 skew-symmetric matrices of rank at most 4, not intersecting its singular locus. Such surfaces correspond to quadratic systems of skew-symmetric matrices of size 6 and constant rank 4, and give rise to a globally generated vector bundle E on the quadric. Weanalyse these bundles and their geometry, relating them to linear congruences in P-5.
Quadric surfaces in the Pfaffian hypersurface in ℙ14 / Boralevi, Ada; Fania, Maria Lucia; Mezzetti, Emilia. - In: LINEAR & MULTILINEAR ALGEBRA. - ISSN 0308-1087. - ELETTRONICO. - 70:19(2022), pp. 4675-4694. [10.1080/03081087.2021.1895048]
Quadric surfaces in the Pfaffian hypersurface in ℙ14
Boralevi, Ada;Mezzetti, Emilia
2022
Abstract
We study smooth quadric surfaces in the Pfaffian hypersurface in P-14 parameterizing 6 x 6 skew-symmetric matrices of rank at most 4, not intersecting its singular locus. Such surfaces correspond to quadratic systems of skew-symmetric matrices of size 6 and constant rank 4, and give rise to a globally generated vector bundle E on the quadric. Weanalyse these bundles and their geometry, relating them to linear congruences in P-5.File | Dimensione | Formato | |
---|---|---|---|
articolo_revised_30_1_21.pdf
accesso aperto
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
Creative commons
Dimensione
359.51 kB
Formato
Adobe PDF
|
359.51 kB | Adobe PDF | Visualizza/Apri |
Quadric surfaces in the Pfaffian hypersurface in ℙ14.pdf
accesso riservato
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
2.02 MB
Formato
Adobe PDF
|
2.02 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2962372