In this paper we give a complete list of non-isometric bidimensional 푆 1 -invariant Kähler-Einstein submanifolds of a nite dimensional complex projective space endowed with the Fubini-Study metric. This solves in the aforementioned case a classical and long-staying problem addressed among others in [7] and [31]
2–dimensional Kähler-Einstein metrics induced by finite dimensional complex projective spaces / Manno, Gianni; Salis, Filippo. - In: NEW YORK JOURNAL OF MATHEMATICS. - ISSN 1076-9803. - 28:(2022), pp. 420-432.
2–dimensional Kähler-Einstein metrics induced by finite dimensional complex projective spaces
Gianni Manno;Filippo Salis
2022
Abstract
In this paper we give a complete list of non-isometric bidimensional 푆 1 -invariant Kähler-Einstein submanifolds of a nite dimensional complex projective space endowed with the Fubini-Study metric. This solves in the aforementioned case a classical and long-staying problem addressed among others in [7] and [31]File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
2022_NYJM.pdf
accesso aperto
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Creative commons
Dimensione
768.35 kB
Formato
Adobe PDF
|
768.35 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento:
https://hdl.handle.net/11583/2961819