In this paper we give a complete list of non-isometric bidimensional 푆 1 -invariant Kähler-Einstein submanifolds of a nite dimensional complex projective space endowed with the Fubini-Study metric. This solves in the aforementioned case a classical and long-staying problem addressed among others in [7] and [31]

2–dimensional Kähler-Einstein metrics induced by finite dimensional complex projective spaces / Manno, Gianni; Salis, Filippo. - In: NEW YORK JOURNAL OF MATHEMATICS. - ISSN 1076-9803. - 28:(2022), pp. 420-432.

2–dimensional Kähler-Einstein metrics induced by finite dimensional complex projective spaces

Gianni Manno;Filippo Salis
2022

Abstract

In this paper we give a complete list of non-isometric bidimensional 푆 1 -invariant Kähler-Einstein submanifolds of a nite dimensional complex projective space endowed with the Fubini-Study metric. This solves in the aforementioned case a classical and long-staying problem addressed among others in [7] and [31]
2022
File in questo prodotto:
File Dimensione Formato  
2022_NYJM.pdf

accesso aperto

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 768.35 kB
Formato Adobe PDF
768.35 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2961819