As we move from 5G to 6G, edge computing is one of the concepts that needs revisiting. Its core idea is still intriguing: Instead of sending all data and tasks from an end user's device to the cloud, possibly covering thousands of kilometers and introducing delays lower-bounded by propagation speed, edge servers deployed in close proximity to the user (e.g., at some base station) serve as proxy for the cloud. This is particularly interesting for upcoming machine-learning-based intelligent services, which require substantial computational and networking performance for continuous model training. However, this promising idea is hampered by the limited number of such edge servers. In this article, we discuss a way forward, namely the V-Edge concept. V-Edge helps bridge the gap between cloud, edge, and fog by virtualizing all available resources including the end users' devices and making these resources widely available. Thus, V-Edge acts as an enabler for novel microservices as well as cooperative computing solutions in next-generation networks. We introduce the general V-Edge architecture, and we characterize some of the key research challenges to overcome in order to enable wide-spread and intelligent edge services.

V-Edge: Virtual Edge Computing as an Enabler for Novel Microservices and Cooperative Computing / Dressler, Falko; Chiasserini, Carla Fabiana; Fitzek, Frank H. P.; Karl, Holger; Lo Cigno, Renato; Capone, Antonio; Casetti, CLAUDIO ETTORE; Malandrino, Francesco; Mancuso, Vincenzo; Klingler, Florian; Rizzo, Gianluca. - In: IEEE NETWORK. - ISSN 0890-8044. - STAMPA. - 36:3(2022), pp. 24-31. [10.1109/MNET.001.2100491]

V-Edge: Virtual Edge Computing as an Enabler for Novel Microservices and Cooperative Computing

Carla Fabiana Chiasserini;Claudio Casetti;
2022

Abstract

As we move from 5G to 6G, edge computing is one of the concepts that needs revisiting. Its core idea is still intriguing: Instead of sending all data and tasks from an end user's device to the cloud, possibly covering thousands of kilometers and introducing delays lower-bounded by propagation speed, edge servers deployed in close proximity to the user (e.g., at some base station) serve as proxy for the cloud. This is particularly interesting for upcoming machine-learning-based intelligent services, which require substantial computational and networking performance for continuous model training. However, this promising idea is hampered by the limited number of such edge servers. In this article, we discuss a way forward, namely the V-Edge concept. V-Edge helps bridge the gap between cloud, edge, and fog by virtualizing all available resources including the end users' devices and making these resources widely available. Thus, V-Edge acts as an enabler for novel microservices as well as cooperative computing solutions in next-generation networks. We introduce the general V-Edge architecture, and we characterize some of the key research challenges to overcome in order to enable wide-spread and intelligent edge services.
2022
File in questo prodotto:
File Dimensione Formato  
main.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Pubblico - Tutti i diritti riservati
Dimensione 1.11 MB
Formato Adobe PDF
1.11 MB Adobe PDF Visualizza/Apri
Chiasserini-V-Edge.pdf

accesso riservato

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 2.24 MB
Formato Adobe PDF
2.24 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2961582