Today, large amounts of data are collected in various domains, presenting unprecedented economic and societal opportunities. Yet, at present, the exploitation of these data sets through data science methods is primarily dominated by AI-savvy users. From an inclusive perspective, there is a need for solutions that can democratise data science that can guide non-specialists intuitively to explore data collections and extract knowledge out of them. This paper introduces the vision of a new data science engine, called DS4ALL (Data Science for ALL), that empowers users who are neither computer nor AI experts to perform sophisticated data exploration and analysis tasks. Therefore, DS4ALL is based on a conversational and intuitive approach that insulates users from the complexity of AI algorithms. DS4ALL allows a dialogue-based approach that gives the user greater freedom of expression. It will enable them to communicate using natural language without requiring a high level of expertise on data-driven algorithms. User requests are interpreted and handled internally by the system in an automated manner, providing the user with the required output by masking the complexity of the data science workflow. The system can also collect feedback on the displayed results, leveraging these comments to address personalized data analysis sessions. The benefits of the envisioned system are discussed, and a use case is also presented to describe the innovative aspects.

DS4ALL: All you need for democratizing data exploration and analysis / Bethaz, Paolo; Belhajjame, Khalid; Vargas-Solar, Genoveva; Cerquitelli, Tania. - (2021), pp. 4235-4242. (Intervento presentato al convegno 2021 IEEE International Conference on Big Data (Big Data) tenutosi a Orlando, FL, USA nel 15-18 Dec. 2021) [10.1109/BigData52589.2021.9671883].

DS4ALL: All you need for democratizing data exploration and analysis

Bethaz, Paolo;Cerquitelli, Tania
2021

Abstract

Today, large amounts of data are collected in various domains, presenting unprecedented economic and societal opportunities. Yet, at present, the exploitation of these data sets through data science methods is primarily dominated by AI-savvy users. From an inclusive perspective, there is a need for solutions that can democratise data science that can guide non-specialists intuitively to explore data collections and extract knowledge out of them. This paper introduces the vision of a new data science engine, called DS4ALL (Data Science for ALL), that empowers users who are neither computer nor AI experts to perform sophisticated data exploration and analysis tasks. Therefore, DS4ALL is based on a conversational and intuitive approach that insulates users from the complexity of AI algorithms. DS4ALL allows a dialogue-based approach that gives the user greater freedom of expression. It will enable them to communicate using natural language without requiring a high level of expertise on data-driven algorithms. User requests are interpreted and handled internally by the system in an automated manner, providing the user with the required output by masking the complexity of the data science workflow. The system can also collect feedback on the displayed results, leveraging these comments to address personalized data analysis sessions. The benefits of the envisioned system are discussed, and a use case is also presented to describe the innovative aspects.
2021
978-1-6654-4599-3
File in questo prodotto:
File Dimensione Formato  
DS4ALL_All_you_need_for_democratizing_data_exploration_and_analysis.pdf

accesso riservato

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 1.33 MB
Formato Adobe PDF
1.33 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
ds4eiw_2021.pdf

accesso aperto

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Pubblico - Tutti i diritti riservati
Dimensione 775.85 kB
Formato Adobe PDF
775.85 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2961180